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Abstract: Brain tumors, as central nervous system diseases that endanger human health , 

require early and accurate detection to significantly improve patient survival rates. Magnetic 

Resonance Imaging (MRI), due to its superior soft-tissue contrast and non-invasiveness, has 

become a crucial tool in brain tumor diagnosis. However, traditional imaging diagnosis, 

which heavily relies on manual interpretation, suffers from limitations such as strong 

subjectivity and low efficiency. To address these issues, this paper proposes an automatic 

brain tumor detection method based on Convolutional Neural Networks (CNN). By 

leveraging deep learning techniques, the method extracts multi-level features from MRI 

images to achieve high-precision classification of glioma, meningioma, pituitary tumor, and 

non-tumor categories. A lightweight CNN model was developed, incorporating data 

augmentation and normalization preprocessing strategies. Experiments were conducted on a 

dataset of 7,023 MRI images. The results show that the model achieved classification 

accuracies of 96% on the training set and 95% on the validation set, demonstrating strong 

robustness and generalization capability. Confusion matrix analysis indicates that the model 

maintains high recognition accuracy across all categories, with particularly outstanding 

performance in identifying non-tumor and pituitary tumor cases. This study provides an 

effective technical pathway for intelligent assisted diagnosis of brain tumors and holds 

promising clinical application potential. 
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1. Introduction 

Brain tumors, as one of the most common life-threatening neurological disorder of the nervous system, 

have become a significant global public health concern [1]. According to statistics from the World 

Health Organization, the annual incidence of brain tumors continues to rise, particularly among the 

middle-aged and elderly populations, where the increase is especially pronounced. Although 

therapeutic approaches for brain tumors have steadily advanced, many patients are often diagnosed 

at a late stage due to the insidious nature of early symptoms. This results in a shortened therapeutic 

window and poor prognosis. Therefore, early and accurate detection of brain tumors is of critical 

importance for improving patient survival rates, enhancing treatment outcomes, and prolonging life 

expectancy. 

Magnetic Resonance Imaging (MRI), as a non-invasive imaging technique, is widely used in the 

diagnosis of brain diseases due to its ability to provide superior soft-tissue contrast of brain tissues. 
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MRI not only accurately depicts the location, morphology, and spatial relationship of brain tumors 

with surrounding tissues but also avoids exposure to ionizing radiation, offering substantial safety 

benefits for patients. As such, MRI imaging plays an irreplaceable role in brain tumor detection and 

is currently one of the most commonly used diagnostic tools in clinical practice. 

Although MRI technology provides reliable imaging data for brain tumor detection, traditional 

diagnostic methods based on subjective interpretation and manual annotation by radiologists still 

present notable limitations. Radiologists typically identify and classify tumors based on visual 

appearance, morphological features, and lesion distribution. This process relies heavily on the 

clinician’s expertise and experience. However, the imaging characteristics of brain tumors often 

exhibit high heterogeneity—tumor shape, size, location, and interaction with adjacent brain structures 

can vary significantly, making interpretation more complex. Moreover, tumor boundaries are 

sometimes ambiguous, and low-contrast lesions may be difficult to distinguish from normal brain 

tissue, placing high demands on diagnostic accuracy. 

Manual interpretation and annotation are not only experience-dependent but also susceptible to 

subjectivity, which can lead to variability in diagnostic results among different clinicians, ultimately 

affecting the consistency and accuracy of diagnosis. These limitations are particularly evident in cases 

involving diverse tumor types, small lesions, or tumors located in anatomically challenging regions 

of the brain. 

Although traditional machine learning methods have been widely applied in medical image 

analysis, employing manually designed feature extraction and classification algorithms for 

preliminary tumor identification and classification, they still face many challenges. Traditional 

machine learning approaches rely on hand-crafted features, which often fail to comprehensively 

capture the complex characteristics of brain tumors in MRI images. This is especially problematic 

when dealing with diverse tumor types, low-contrast lesions, and indistinct boundaries, all of which 

significantly impact classification performance. Furthermore, these methods often require extensive 

domain expertise and incur high computational costs, making them inefficient for processing large-

scale imaging data and incapable of delivering high-precision results within a short time frame. These 

constraints make traditional imaging-based diagnostic approaches insufficient to meet the clinical 

demand for high-accuracy and high-efficiency brain tumor detection. 

Over recent years, the rapid evolution of deep learning—particularly Convolutional Neural 

Networks (CNN)—has brought revolutionary progress to the field of medical image analysis [2]. As 

a powerful image processing tool, CNNs can automatically learn effective features from large-scale 

MRI datasets and extract deep hierarchical information through multi-layer network architectures. 

Unlike traditional methods, CNNs do not require manually designed features but instead 

autonomously identify key regions and details in medical images, thereby greatly improving the 

accuracy and robustness of image recognition. CNNs have demonstrated strong adaptability and 

superior performance in handling high-dimensional, complex, and heterogeneous medical images. 

By training on large volumes of imaging data, CNNs can identify underlying patterns and 

relationships, enabling accurate brain tumor detection and significantly enhancing classification and 

segmentation performance. 

This study aims to explore brain tumor detection methods based on artificial intelligence, 

specifically focusing on the application of CNNs in MRI image analysis. Through deep learning 

analysis of MRI data and the development of advanced CNN models, this paper investigates 

approaches to improve the accuracy and efficiency of brain tumor detection, providing a more precise 

and effective auxiliary tool for clinical diagnosis. 
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2.  Previous works  

Traditional image classification models typically rely on manual feature extraction and employ 

comparatively basic algorithms for classification tasks. Although such models can perform 

adequately under certain conditions, they often encounter considerable difficulties when dealing with 

complex data. Common traditional image classification methods include K-Nearest Neighbors 

(KNN), Support Vector Machines (SVM), Decision Trees, and Random Forests. In brain tumor 

detection, these models usually require manual preprocessing and feature extraction before the image 

data can be fed into the classification algorithm. 

KNN is an instance-based learning method that classifies samples by calculating the distance—

usually Euclidean or Manhattan distance—between the test sample and the training samples [3]. 

Before being input into the KNN algorithm, images must first undergo feature extraction using 

techniques such as edge detection or color histograms to transform the raw image into a feature vector. 

While KNN is simple and intuitive, it is susceptible to the "curse of dimensionality" in high-

dimensional data, which can lead to decreased classification performance. 

SVM performs classification by constructing a hyperplane that separates different categories. Input 

images must first undergo feature extraction, commonly through techniques like Principal 

Component Analysis (PCA) or local feature descriptors such as Scale-Invariant Feature Transform 

(SIFT) or Histogram of Oriented Gradients (HOG). SVM is well-suited for small sample datasets, 

but its performance is highly sensitive to parameter selection, such as the choice of kernel function 

and penalty parameters. Moreover, the computational cost becomes significant when handling large-

scale datasets. 

Decision Trees perform classification through an iterative partitioning process that builds a tree-

like hierarchy, with each node corresponding to specific features and its branches indicating potential 

value ranges. Image data must also be transformed through feature extraction before being used in a 

decision tree model. Decision Trees offer good interpretability and can clearly illustrate the decision-

making process. However, they are prone to overfitting, which can degrade performance on unseen 

data. 

Random Forests enhance classification accuracy by aggregating multiple decision trees. Each tree 

is trained using a random subset of features, which effectively mitigates overfitting. However, similar 

to decision trees, Random Forests require feature extraction prior to model input, typically using the 

same methods. Although Random Forests generally achieve high classification performance, they 

come with increased model complexity, leading to longer training and prediction times. 

Traditional classification models heavily rely on manual feature extraction when processing image 

data. This process is time-consuming and requires domain expertise to identify appropriate features, 

which limits the models' performance when confronted with complex image characteristics. For 

instance, in brain tumor MRI images, variations in tumor shape, texture, and surrounding tissue can 

significantly influence classification accuracy. Traditional models often struggle to capture such 

complex spatial relationships and subtle variations, leading to reduced classification performance. 

Additionally, these models face challenges in computational efficiency and accuracy when processing 

large-scale datasets. As the volume of MRI images increases, both training and inference times for 

traditional algorithms grow substantially, potentially resulting in wasted computational resources and 

performance bottlenecks. Moreover, parameter tuning in traditional models often depends on prior 

knowledge and lacks adaptability, further limiting their practical applicability. 

In contrast, deep learning, particularly CNNs, can automatically extract multi-level features 

directly from raw images, overcoming the limitations of traditional methods. Through the stacking of 

multiple convolutional and pooling layers, CNNs can effectively capture spatial structures and local 

patterns within images, thereby achieving more accurate classification. In the context of brain tumor 
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detection from MRI images, CNNs not only recognize tumor boundaries and morphological 

variations but also learn more complex feature representations, enhancing the robustness of 

classification performance. 

3. Dataset and preprocessing 

A brain tumor refers to a mass or collection of abnormal cells in the brain, which can be either 

cancerous (malignant) or non-cancerous (benign). In this study, a merged dataset from multiple 

sources was used for comprehensive analysis [4], [5], [6], [7]. The dataset consists of 7,023 human 

brain MRI images categorized into four classes: glioma, meningioma, no tumor, and pituitary tumor 

(Figure 1). 

 

Figure 1: Samples from the dataset used in this study 

The training set used in this study comprises MRI images from the four primary categories of brain 

tumors. First, the glioma class includes 1,321 MRI images of glioma tumors. As a malignant type of 

brain tumor with diverse morphologies and characteristics, these images are crucial for enabling the 

model to learn the specific features of gliomas. Second, the meningioma class contains 1,339 MRI 

images. Meningiomas are typically benign tumors whose location and imaging features differ from 

those of gliomas, making them significant for accurate classification and detection. Additionally, the 

no tumor class includes 1,595 MRI images of healthy brain tissues, serving as a critical reference for 

the model to improve classification accuracy and reduce misdiagnosis. Finally, the pituitary tumor 

class comprises 1,457 MRI images. Pituitary tumors, located in the pituitary gland, exhibit unique 

imaging characteristics, and accurate classification of these images is essential for clinical diagnosis. 

In the test set, the number of images for each category is as follows: 300 (glioma), 306 (meningioma), 

405 (no tumor), and 300 (pituitary). 

To address the scarcity of medical imaging data and enhance the generalization ability of the model, 

this study employed data augmentation techniques. A composite augmentation strategy was designed 

for the training set: first, the original MRI images were subjected to random horizontal flip and 

vertical flip to simulate imaging variations from different scanning orientations. Subsequently, 

random rotations within ±10° were applied to improve the model’s robustness to directional variations 

of lesions. All images were uniformly resized to 224×224 pixels, followed by tensor transformation 

and normalization. The normalization parameters followed the ImageNet standard (mean: [0.485, 

0.456, 0.406]; standard deviation: [0.229, 0.224, 0.225]). 
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For the validation and test sets, a deterministic preprocessing pipeline was applied, which included 

only resizing, tensor transformation, and normalization, in order to eliminate the randomness 

introduced by data augmentation and ensure fair model performance evaluation. The dataset was split 

into training and test sets in a 7:3 ratio. Within the training set, 10% of the data was further set aside 

as a validation set for hyperparameter tuning. 

4. Model 

 

Figure 2: Model structure 

The CNN architecture designed in this study consists of three integrated modules: the feature 

extraction module, the spatial down-sampling module, and the classification decision module (as 

illustrated in Figure 2).  

The feature extraction module comprises four progressive convolutional layers responsible for 

extracting multi-scale lesion features from the input MRI images. The first convolutional layer 

employs kernels of size 4×4 with 32 output channels. The number of channels increases in subsequent 

layers following a 64-128-128 progression. After each convolution operation, Batch Normalization 

and ReLU non-linear activation are applied sequentially to accelerate model convergence and 

enhance the expressiveness of complex texture features. All convolutional layers adopt a stride of 1 

and no padding (padding=0), maintaining sensitivity to local features while minimizing the number 

of parameters. The spatial down-sampling module is composed of multi-level pooling layers 

embedded within the feature extraction process to achieve progressive spatial compression. The 

outputs of the first three convolutional layers are followed by 3×3 Max Pooling layers with a stride 

of 3, preserving significant feature responses while suppressing noise. The fourth layer incorporates 

an improved pooling operation (kernel=3×3, stride=2), reducing the feature map resolution to 6×6 

while mitigating excessive loss of small lesion information. The classification decision module is 

responsible for final classification. The 128-channel feature maps, after spatial compression, are 

flattened and passed into a fully connected layer, which maps the features to a 512-dimensional latent 

space. This layer enables high-level feature interactions to establish correlations between lesion 

representations and class labels. To prevent overfitting, a Dropout layer with a dropout rate of 50% 

is applied after the hidden layer, randomly deactivating some neurons to enhance generalization 

capability. The final output layer utilizes a Softmax function to produce a four-dimensional 

probability vector corresponding to the healthy group and the three tumor subtypes, completing the 

end-to-end classification task. 

During the training phase, the Adam optimizer was adopted with an initial learning rate set to 

0.0002, and cross-entropy loss was selected as the loss function. In each training batch, forward 

propagation is followed by gradient zeroing and backpropagation, where model parameters are 

dynamically updated to minimize prediction error. To monitor the training process, cumulative loss 

and classification accuracy are calculated in real time after every 150 batch updates. Upon completion 

of the full training cycle, average training loss and accuracy are recorded as indicators of model 

convergence. Additionally, an Early Stopping mechanism was introduced to enhance generalization 
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performance: if the validation loss fails to decrease for five consecutive epochs, training is 

automatically terminated to avoid overfitting. 

Through this design, the model achieves a balanced trade-off between feature representation 

capacity and generalization ability, effectively addressing the challenges of overfitting in complex 

medical image classification tasks. 

5. Results 

 

Figure 3: Model loss and accuracy curve 

During the model training process, the loss function exhibited an ideal convergence trend. From the 

training loss curve, it can be observed that the loss value decreased rapidly as the number of training 

epochs increased. In the initial epochs, the training loss dropped significantly from approximately 

0.55 to around 0.2, and then gradually stabilized throughout the later stages of training, eventually 

reaching a low and steady value of approximately 0.07. The validation loss followed a similar 

downward trend. Although slight fluctuations occurred in certain epochs, the overall pattern closely 

mirrored that of the training loss, ultimately stabilizing at around 0.08. This indicates that the model 

achieved good fitting performance on both the training and validation sets, without exhibiting 

significant signs of overfitting. 

The trends in training and validation accuracy further confirm the effectiveness of the model. The 

training accuracy started at approximately 0.80 and steadily increased as training progressed, 

surpassing 0.95 after around 10 epochs and eventually stabilizing at approximately 0.96. The 

validation accuracy also demonstrated strong performance. Despite some minor fluctuations during 

training, it exhibited a general upward trend and ultimately stabilized at approximately 0.95, closely 

aligning with the training accuracy. These results further demonstrate the model’s strong 

generalization ability and performance stability. 



Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.23007

73

 

 

 

Figure 4: Prediction results 

Regarding the model’s actual classification performance, the confusion matrix provides an 

intuitive visualization of its effectiveness across different categories. For the “notumor” class, the 

model demonstrated exceptionally high accuracy, with only 1 out of 199 samples misclassified, 

resulting in a correct classification rate of 99.5%. This indicates that the model can reliably distinguish 

non-tumor cases with a high degree of confidence. In the “meningioma” category, the model also 

performed well, correctly classifying 149 out of 155 samples, yielding an accuracy of 96.1%. Only a 

small number of samples were misclassified into other categories. For the “pituitary” class, 147 out 

of 150 samples were correctly identified, achieving an accuracy rate of 98%, which demonstrates the 

model’s strong discriminative ability for this tumor type. 

However, the model showed slightly weaker performance in the “glioma” category. Among 151 

samples, 144 were correctly classified, with an accuracy rate of 95.4%. Although this is still a high 

accuracy rate, it is relatively lower compared to the other classes, with a higher number of 

misclassifications. This may be attributed to the greater complexity of glioma tumor features or the 

higher variability within the glioma samples. These findings suggest that further optimization and 

refinement in handling this specific category could help improve the overall classification 

performance in future research. 

6. Discussion and conclusion 

This study proposed an artificial intelligence-based brain tumor detection method using MRI images, 

achieving automatic classification and recognition of brain tumors through a deep learning model. 

Experimental results demonstrated that the model performed well during both training and validation 

phases. The training and validation losses showed a steadily decreasing trend, eventually converging 

to approximately 0.07 and 0.08, respectively. Meanwhile, the training and validation accuracies 

stabilized at around 0.96 and 0.95, indicating the model’s high precision in data fitting and its strong 

generalization capability on unseen validation data. 

Further evaluation through confusion matrix analysis revealed that the model achieved high 

classification accuracy across various categories. Specifically, the correct classification rates for the 

“notumor,” “meningioma,” and “pituitary” classes reached 99.5%, 96.1%, and 98%, respectively. 

Although the performance for the “glioma” class was slightly lower, the model still achieved an 

accuracy of 95.4%, indicating overall excellent classification performance. 
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However, the model still has several limitations. Firstly, the model architecture is relatively simple, 

which may hinder its ability to capture all critical features when dealing with more complex or highly 

heterogeneous tumor imaging data, thus affecting classification accuracy. Secondly, although the 

model exhibited good robustness on the current dataset, its generalization ability needs further 

validation and enhancement—especially when applied to MRI images from different medical 

institutions, scanning equipment, or with varying imaging parameters, where adaptability issues may 

arise. From a computational efficiency perspective, while the current training and inference times are 

within acceptable limits, there is still room for improvement in processing large-scale datasets or 

performing real-time detection tasks. 

In the future, several strategies can be employed to optimize deep learning-based brain tumor MRI 

image classification methods. Firstly, more advanced network architectures such as Transformers can 

be introduced to capture more global image features [8], or transfer learning can be leveraged to 

utilize large-scale pretrained models [9], thereby improving generalization and reducing data 

requirements. Secondly, incorporating multimodal imaging data (e.g., MRI, PET, CT) can provide 

complementary information from different imaging modalities, enhancing diagnostic accuracy. 

Efficient training algorithms such as distributed training and self-supervised learning can also be 

explored to reduce reliance on large amounts of labeled data, thereby lowering computational costs 

and improving adaptability. Data augmentation techniques [10], such as generating synthetic images 

with GANs [11], can expand the training dataset and improve recognition of rare tumor types. 

Further clinical validation studies—particularly large-scale, multi-center trials—are essential to 

ensure the model’s stability and applicability across diverse populations, imaging devices, and 

acquisition parameters. Enhancing the interpretability of AI diagnostics through techniques such as 

attention-based visualization can help clinicians better understand the model’s decision-making 

process and build trust in AI systems. In addition, integrating pathological, genomic, and other 

interdisciplinary data can facilitate precision medicine and support personalized treatment strategies. 

Optimizing the integration of AI diagnostic systems into existing hospital information 

infrastructures (e.g., HIS, PACS) can improve the convenience and efficiency of clinical applications. 

Attention should also be given to model scalability to accommodate emerging tumor subtypes and 

evolving imaging technologies. Finally, fostering interdisciplinary collaboration among computer 

scientists, radiologists, pathologists, and clinicians is crucial to accelerating the clinical translation of 

AI diagnostic technologies and ultimately improving the quality of care for brain tumor patients. 
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