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Abstract: With the widespread use of Android applications, frequent access to personal user 

data (such as location information and device identifiers) has become the norm. However, 

inconsistencies between privacy policy statements and actual app behavior often lead to 

significant privacy risks. This paper proposes a consistency detection method, LLM-

PrivCheck, based on large language models (LLMs), which automatically checks whether the 

data collection statements in privacy policies align with the actual behavior of applications. 

LLM-PrivCheck utilizes LLMs for privacy policy parsing and combines taint analysis 

techniques to track data flows, ultimately achieving consistency detection through ontology 

mapping. Experimental results show that in tests on 960 commercial applications from 

Google Play, LLM-PrivCheck detected that 96.25% of the apps had inconsistencies between 

their privacy policies and actual behavior. 
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1. Introduction 

With the rapid development of the Android ecosystem, applications are increasingly collecting user 

personal data to provide personalized services. However, the collection and sharing of this data is 

often opaque, and inconsistencies exist between privacy policies and app code. For example, some 

applications do not explicitly state in their privacy policies the collection of certain data, while the 

actual app code includes operations for collecting this data. Such inconsistencies can lead to 

significant privacy risks and violate privacy regulations such as the GDPR[1] and CCPA[2]. 

Additionally, as user concerns over privacy protection continue to rise, related laws and regulations 

are becoming increasingly stringent. The EU Digital Services Act (DSA)[3], which came into effect 

in 2023, further requires applications to provide transparent privacy policies and ensure consistency 

with actual behavior. Therefore, accurately detecting inconsistencies in privacy policies is crucial for 

protecting user rights and ensuring regulatory compliance. Existing research mainly relies on static 

and dynamic analysis techniques to detect privacy data flows. For example, AppCensus[4] primarily 

relies on dynamic analysis, LeakPred[5] detects privacy data flows by identifying privacy leakage 

components in Android applications, and PoliCheck[6] employs a combined static and dynamic 

analysis approach. However, these methods have the following limitations: 

• Traditional NLP technologies lack a deep understanding of privacy policies, and most tools only 

perform keyword matching, making it difficult to accurately parse complex privacy statements. 
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• Traditional taint analysis depends on manually defined data flow rules and taint propagation paths, 

making automation and high accuracy difficult to achieve. 

• Handling code obfuscation is challenging, as many applications use ProGuard obfuscation 

techniques, making it hard for traditional methods to trace data flows. 

To address these issues, this paper proposes the LLM-PrivCheck research framework, which 

combines large language models (LLMs), static analysis, and ontology mapping to improve the 

accuracy of consistency detection. 

The main contributions of this work are summarized as follows: 

• Privacy policy texts are parsed using LLMs, and a comparison with traditional NLP methods 

shows that this approach yields better results. 

• A novel approach combining large models with taint analysis is applied to Android applications, 

efficiently and automatically extracting data flows. 

• Building on the previous two contributions, the LLM-PrivCheck framework is proposed for 

consistency detection, effectively identifying inconsistencies between privacy policies and actual 

behavior in Android applications. 

The structure of the remaining sections is as follows: Section 2 provides a detailed description of 

the model, followed by experimental validation in Section 3. Finally, Section 4 concludes the paper. 

2. Method 

The LLM-PrivCheck framework is proposed as a consistency detection solution based on LLMs, 

aimed at protecting user privacy. The core of LLM-PrivCheck lies in utilizing LLMs to perform 

privacy policy information extraction and code taint analysis, generating two reports, and then 

conducting consistency detection related to user privacy behavior based on these reports. As shown 

in Figure 1, in the specific implementation process, first, the LLM conducts in-depth analysis of the 

privacy policy text, extracting key privacy information such as data collection types, purposes of use, 

sharing entities, and so on. Next, taint analysis is performed on the code to track the propagation paths 

of user data within the code, identifying operations that may involve privacy. Throughout this process, 

the LLM assists in understanding the code logic and semantics, determining whether these operations 

align with the descriptions in the privacy policy. 

The two generated reports are the privacy policy report and the code analysis report. The privacy 

policy report lists in detail all the key information extracted from the privacy policy text, while the 

code analysis report records the behaviors involving user privacy and the data flow in the code. By 

comparing these two reports, inconsistencies between the privacy policy and the actual code behavior 

can be identified, allowing for timely adjustments and corrections to ensure that user privacy is 

adequately protected. The advantage of this approach lies in combining the powerful natural language 

processing capabilities of LLMs with the precision of code taint analysis, enabling more accurate 

detection of consistency between privacy policies and code behavior, thereby effectively enhancing 

user privacy protection. 
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Figure 1: Structure diagram of the LLM-PrivCheck framework 

2.1. Privacy policy parsing 

The performance of large language models (LLMs) is influenced by various factors, among which 

prompt design, configuration parameters, and model selection are key factors. In this study, a Design 

Science Research (DSR) approach [7][8] was adopted to develop an LLM framework for privacy 

policy analysis and to evaluate its effectiveness. This approach enabled the systematic exploration 

and optimization of various aspects of the model to achieve optimal performance. A comparative 

analysis with existing state-of-the-art solutions was also conducted to verify the competitiveness and 

generalization capability of our framework. Through this systematic process, a well-performing and 

generalizable configuration was successfully proposed, offering a new and effective solution for the 

automated analysis of privacy policies. 

In terms of prompt engineering, extensive experiments and tests were conducted to explore the 

impact of different prompt designs on model performance. Several methods were tested, such as 

specifying data boundaries, expanding task descriptions, and using Few-shot prompts. By analyzing 

the test results, it was found that some prompt engineering practices had a significant positive impact 

on model performance, while others might have a negative effect. After multiple iterations and 

optimizations, the optimal prompt engineering combination was identified, ensuring that the model 

could achieve the best performance in privacy policy analysis tasks. 

The model parameter configuration focused on three key parameters: model temperature, Top p, 

and system input. Through a series of tests and analyses, it was found that the temperature parameter 

had the most significant impact on test results for privacy policy information extraction tasks. When 

the temperature was set to a low value, particularly 0, the model exhibited the most stable and accurate 

performance. Further experiments demonstrated that, when the temperature was set to 0, variations 

in the Top p parameter within the range of [0, 1] had a relatively small impact on model performance. 

Based on these findings, it was concluded that setting Top p to its default value and temperature to 0 

represented the best parameter combination to ensure the stability and accuracy of the model in 

privacy policy analysis. Additionally, tests indicated that system input did not have a positive effect 

on the model’s performance, leading to its exclusion from the final configuration. 
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2.2. Data flow extraction 

Data flow extraction utilizes taint analysis technology [9], which parses the data flow propagation 

paths and privacy-sensitive API calls in the app source code to identify potential privacy risks. As 

shown in Figure 2, the execution of this method is divided into the following four steps: 

• AST Syntax Tree Construction: The Abstract Syntax Tree (AST) is used to parse the source 

code, extracting its structural information and converting the code into a tree-like structure. The 

focus is on variable scope, data flow propagation paths, and code hierarchy, providing fundamental 

data support for subsequent analysis. 

• Function Call Chain Generation: The complete function call relationships are constructed to 

identify and trace the code locations that call security-sensitive functions (such as file operations, 

network communications, etc.). The data flow dependencies are traced, and a complete call chain 

is established, considering cross-file and cross-module calling relationships to ensure the integrity 

of the call chain. 

• Dangerous Flow Generation: After obtaining the call chain, potential dangerous data flows are 

analyzed, identifying the propagation paths of external input data in the call chain. These inputs 

are checked for their impact on the parameters of security-sensitive functions. Taint analysis is 

combined to trace the data propagation path and identify potential security risks. 

• Prompt Sequence Construction: Based on the dangerous flow, targeted prompt sequences are 

generated. Each function in the dangerous flow is treated as an analysis node, and multi-level 

prompts are constructed using its data flow information. A staged prompt strategy is used to guide 

the LLM in code understanding and vulnerability identification, improving the accuracy and 

interpretability of the analysis. 

 

Figure 2: Data flow analysis principle diagram 

2.3. Consistency detection 

The core function of the consistency detection algorithm is to determine whether the data flows 

related to third-party collection of user information in the application code are adequately and 

explicitly disclosed in the privacy policy. To achieve this goal, the algorithm classifies disclosures 

into four distinct types [10] based on the semantic relationships between terms in the privacy policy: 

clear disclosures, vague disclosures, omitted disclosures, and negative disclosures. This classification 

method facilitates systematic analysis and judgment of different disclosure situations regarding data 

flows, thereby improving the accuracy and consistency of detection. 

For the definition and modeling of the algorithm, it is assumed that an application can be abstracted 

as a tuple 𝑎=(𝐹,𝑃), where 𝐹 represents the data flow information obtained from static analysis of the 

application, and 𝑃 represents the collection statement content extracted from the privacy policy 

analysis. Additionally, to more specifically characterize the attributes of privacy data flows, set 𝐷 is 

defined as the set of types of privacy data, and set 𝐸 represents the set of potentially involved third-

party entities. Based on these definitions, the consistency detection rules intuitively describe the 

matching relationship between the application data flow and the privacy policy, providing a clear rule 

framework and methodological guidance for identifying inconsistencies in data flows. This rule 

model allows for efficient detection of whether the privacy policy comprehensively reflects actual 

data collection behaviors and helps identify potential privacy compliance issues. 
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3. Experiment 

3.1. Dataset 

A total of 13,417 Android applications and their privacy policies were crawled from 32 categories on 

Apkpure (a mirror site for Google Play) for the purpose of conducting experiments. To validate the 

effectiveness of the approach, the privacy policy parsing and data flow extraction tasks were analyzed 

separately. For the privacy policy task, the publicly available MAPP corpus [11] was utilized, while 

the DroidLeaks dataset was used for data flow extraction. After validating the effectiveness of the 

privacy policy parsing and data flow extraction methods, experimental analysis was conducted on the 

real dataset collected. 

3.1.1. MAPP dataset 

The MAPP dataset [11] holds significant value in the field of privacy policy analysis. This dataset 

includes privacy policies from 64 applications on Google Play Store, divided into paragraphs. Each 

paragraph is annotated by legal experts to indicate whether it involves the collection or sharing of 

different types of personal data. For instance, a paragraph may be marked as disclosing the collection 

of geographic location information. Such fine-grained annotations help in the accurate training and 

evaluation of NLP models to identify specific data processing methods. Notably, the MAPP corpus 

is one of the few datasets with multilingual annotations, supporting both English and German, making 

it more applicable for cross-language legal research. 

3.1.2. DroidLeaks dataset 

The DroidLeaks dataset [12] plays a key role in privacy and security vulnerability analysis for 

Android applications. This dataset includes a large number of applications collected from the Google 

Play Store, and it extracts code patterns through static analysis methods that may lead to the leakage 

of sensitive information. Each detected code snippet is annotated by experts to indicate whether it 

involves improper access or sharing of privacy data. For example, a piece of code may be labeled as 

accessing contact information without the user’s consent. Such fine-grained annotations help in 

training and evaluating NLP models and program analysis tools to accurately identify potential data 

leakage risks. It is worth noting that the DroidLeaks dataset covers a variety of application categories, 

making it more widely applicable for Android security research and privacy compliance detection. 

3.2. Analysis of experimental results 

3.2.1. Privacy policy parsing experiment 

Experiments were conducted using the MAPP dataset to verify and quantify the optimal configuration 

effect of Deepseek. A stratified sampling method was employed to construct balanced experimental 

and control groups, ensuring that each subset adequately represented the diversity of the overall data. 

The experimental group consisted of 33 policy documents, while the control group contained 31. The 

study began with the design of prompt words, which were applied to identify the types of personal 

data in privacy policies. After several rounds of partitioned testing, the prompt words were optimized 

through strategies such as specifying data boundaries, adjusting data arrangement, enhancing task 

descriptions, trimming data, and introducing a few example prompts. Furthermore, by adjusting 

Deepseek parameters (such as temperature, top p, and system input), response quality was further 

improved, and the model was fine-tuned to enhance its performance. 

As shown in the experimental results in Table 1, enhancing task descriptions and using Few-shot 

prompts had a significant positive effect on the model’s performance. However, the arrangement of 
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data placement weakened the model, while specifying data boundaries had no significant effect, and 

data pruning had a negligible impact on the model. From the comparative experiment in Figure 3, it 

is evident that the Deepseek model outperformed both GPT-2 and the traditional Policylint method 

[13]. Therefore, in the subsequent consistency detection, the optimized Deepseek model will be 

adopted. 

Table 1: Prompt engineering experimental results 

Label Specify Boundary Data Placement (Back) Expand Description Data Pruning Few-shot 

Acc +1.54% -1.22% +6.32% - +5.12% 

Pre +1.36% -0.10% +7.56% - +6.58% 

Recall +0.74% -1.58% -0.21% - - 

F1 +0.93% -0.94% +3.54% - +2.75% 

 

Figure 3: Comparative experimental results for privacy policy parsing 

3.2.2. Data flow extraction experiment 

The experiment was conducted on a server equipped with a Core i7 CPU and 8GB of RAM. The data 

source was collected from the Google Play Store and the DroidLeaks public dataset. A comparison 

was made between the LLM-based method and the traditional taint analysis method, LeakPred [7]. 

As shown in Figure 4, a 9.23% improvement in the accuracy of extracting sensitive privacy data flows 

was observed, indicating that the LLM-based method outperforms the traditional approach in data 

flow extraction for Android applications. 



Proceedings	of	the	3rd	International	Conference	on	Software	Engineering	and	Machine	Learning
DOI:	10.54254/2755-2721/2025.23103

175

 

 

 

Figure 4: Comparative experimental results for data flow extraction 

3.2.3. Consistency detection 

After completing the experiments in the previous two steps, the optimized model was run on the real 

dataset. This dataset was obtained through stratified sampling from 32 categories based on download 

rankings in the Google Play Store, resulting in a total of 960 applications. Following the completion 

of the first two steps of LLM-PrivCheck on the real dataset, a consistency detection analysis was 

conducted to assess privacy data leakage. According to the results in Table 2, a total of 3,255 data 

flows related to privacy data were collected from the 960 applications. Of these, 96.25% of the 

applications displayed inconsistencies between their privacy policies and actual behaviors, with 90.67% 

of the data flows showing inconsistencies. 

Table 2: Consistency detection results 

Behavior type APP Data Flow 

Harmless Behavior 36 304 

Vague Behavior 617 1889 

Omitted Behavior 268 909 

Violation Behavior 42 153 

Total 960 3255 

4. Conclusion 

This paper discusses a consistency detection method based on large models, LLM-PrivCheck, which 

can automatically check whether the data collection statements in privacy policies align with the 

actual behaviors of applications. Based on the dataset, our evaluation results indicate that this method 

effectively detected inconsistencies between privacy policies and actual behaviors in 96.25% of the 

applications. By integrating large models with privacy protection, this method offers a new approach 

to safeguarding user privacy. 
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