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Abstract: The rapid deployment and widespread adoption of 5G networks have rendered the 

energy consumption and carbon emissions of base stations increasingly prominent, posing a 

critical challenge for the telecommunications industry in achieving dual-carbon goals. To 

address the carbon emission prediction challenge in 5G base stations, this study proposes a 

hybrid forecasting model based on the deep integration of a Backpropagation (BP) neural 

network and Long Short-Term Memory (LSTM). By collecting multi-dimensional base 

station data encompassing equipment energy consumption, material usage, transmission 

coverage range, deployment configurations, and environmental conditions, systematic 

feature engineering and data preprocessing were conducted to construct a BP-LSTM hybrid 

model capable of capturing both static characteristics and temporal dynamics. Experimental 

results demonstrate that the proposed hybrid model achieves superior performance in 5G 

base station carbon emission prediction, with evaluation metrics reaching R² = 0.98 and 

MAPE = 3.25%, significantly outperforming individual models. Based on the prediction 

outcomes, this study further proposes multi-dimensional energy-saving optimization 

strategies tailored to diverse deployment environments and operational conditions. 

Keywords: Carbon emissions, BP-LSTM hybrid model, energy-saving optimization 

strategies, 5G base stations 

1. Introduction 

As a key energy-consuming sector accounting for a substantial proportion of societal electricity 

consumption, the telecommunications industry faces dual pressures of emission reduction and energy 

efficiency improvement under China's national carbon peak and carbon neutrality (dual-carbon) 

strategic framework [1]. Accurate prediction of carbon emissions from 5G base stations not only 

establishes critical data foundations for energy consumption management, but also provides scientific 

evidence for formulating targeted energy-saving strategies. This approach holds significant 

implications for achieving green and low-carbon transformation within the telecommunications 

sector [2]. 

Existing approaches for carbon emission prediction exhibit notable shortcomings: 

(1) Traditional statistical methods (e.g., linear regression, time-series analysis) rely on linear 

assumptions, failing to characterize complex nonlinear relationships; 

(2) Machine learning techniques (e.g., Support Vector Machines [SVM], Random Forests) 

demonstrate partial nonlinear processing capabilities but show limited effectiveness in feature 

extraction from high-dimensional time-series data; 
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(3) Deep learning architectures (e.g., Backpropagation Neural Networks [BPNN], Long 

Short-Term Memory [LSTM]) excel at complex pattern recognition but present inherent limitations 

as standalone models—BPNNs effectively model static features yet disregard temporal correlations, 

while LSTMs capture temporal dependencies effectively but underperform in static feature 

interpretation. 

Although hybrid models combining multiple algorithmic advantages have emerged as a research 

focus in carbon emission prediction, two critical challenges persist specifically for 5G base station 

scenarios: 

First, existing methodologies inadequately integrate multidimensional features encompassing 

equipment parameters, environmental variables, and operational time-series data, resulting in 

constrained prediction accuracy;Second, current approaches lack synergistic analysis between energy 

consumption dynamics and energy-saving strategies, thereby limiting the practical applicability of 

prediction outcomes. 

These unresolved issues render existing prediction models insufficient to meet the operational 

requirements of low-carbon 5G network development [3][4]. 

Although hybrid models combining multiple architectures have gained research traction, two 

critical gaps persist in the context of 5G base station emission prediction: (1) current methods 

inadequately integrate multidimensional features (equipment parameters, environmental variables, 

and operational time-series data), limiting prediction accuracy; and (2) few studies synergistically 

analyze the dynamic evolution of energy consumption patterns and energy-saving strategies, 

diminishing the practical utility of predictions. These shortcomings render existing models 

insufficient for supporting the low-carbon development of 5G networks. 

To address the aforementioned challenges, this study constructs a hybrid prediction model based 

on deep integration of BP neural networks and LSTM, achieving collaborative modeling of static and 

temporal features through a tandem architecture; designs a multi-dimensional feature engineering 

method to systematically integrate base station equipment parameters, environmental variables, and 

operational time-series data; and finally proposes targeted energy-saving optimization strategies 

based on prediction results, providing data-driven decision support for low-carbon development of 

5G networks. 

2. Data and methodology 

2.1. Data collection and preprocessing 

This study collected operational data from 1,000 5G base stations, comprising five input features 

(equipment energy consumption, material usage, transmission coverage radius, deployment 

configuration, and environmental conditions) with corresponding carbon emissions as the output 

target. The dataset encompasses multidimensional characteristics of 5G base stations, including 

three core continuous parameters: equipment energy consumption (annual electricity consumption: 

5,000-20,000 kWh), total material usage (50-500 kg of metal/plastic components), and transmission 

coverage radius (100-2,000 m). It also incorporates two categorical variables: deployment mode 

(binary encoding: tower-mounted/rooftop) and environmental conditions (binary classification: 

urban/suburban), with annual carbon emissions (2,500-11,500 kg CO₂) as the prediction target. This 

dataset establishes a comprehensive mapping relationship from fundamental equipment parameters 

to final carbon emission values through quantitative characterization of base stations' physical 

attributes, spatial configurations, and environmental features. 

During the data preprocessing phase, raw data were first cleaned through removal of records 

with missing values, elimination of outliers deviating significantly from normal ranges, and deletion 

of duplicate entries to ensure data reliability. Subsequently, all feature variables underwent 
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numerical conversion to transform non-numeric data into model-compatible formats. To mitigate 

dimensional heterogeneity among features, MinMaxScaler normalization was applied to linearly 

map all feature values to the [0,1] interval. Finally, the dataset was partitioned into training and test 

sets at an 80:20 ratio, with the training set used for model learning and parameter optimization, and 

the test set reserved for evaluating model generalization performance. 

2.2. BP neural network model 

The Backpropagation (BP) neural network, as a typical multilayer feedforward network, achieves 

fitting of complex nonlinear mapping relationships through error gradient algorithms. Its core 

principle lies in the iterative optimization mechanism combining forward propagation for output 

calculation and gradient backpropagation for weight adjustment, making it particularly suitable for 

prediction scenarios with multiple input features (e.g., base station energy consumption, material 

usage) and single-output targets (carbon emissions). The constructed BP neural network adopts a 

three-layer topology: 

Input Layer: 5 neurons corresponding to five feature dimensions (equipment energy consumption, 

material usage, etc.); Hidden Layers: Dual hidden layers for enhanced feature abstraction—16 

neurons in the first layer for primary feature interaction and 8 neurons in the second layer for 

high-level feature fusion;Output Layer: A single neuron directly mapping carbon emission 

predictions 

During network training, the hidden layers employ ReLU activation functions to strengthen 

nonlinear representation capability. The Adam optimizer (learning rate 0.001) dynamically adjusts 

weight update steps, with Mean Squared Error (MSE) serving as the loss function to quantify 

prediction deviations. To address overfitting risks, an early stopping mechanism continuously 

monitors validation loss variations—automatically terminating training and reverting to optimal 

weights when no loss reduction occurs over 20 consecutive epochs—ensuring optimal balance 

between pattern recognition and generalization capability. 

2.3. LSTM model 

The Long Short-Term Memory (LSTM) network, a specialized recurrent neural architecture, 

effectively resolves the gradient vanishing problem inherent in traditional RNNs through its unique 

gating mechanisms (input gate, forget gate, output gate). Its core strength lies in modeling 

long-term dependencies within temporal data. To address the time-series characteristics of 5G base 

station operations—including periodic load fluctuations and seasonal environmental temperature 

variations—this study establishes a dual-layer LSTM structure: the first layer with 32 units and the 

second with 16 units, followed by a fully connected layer containing 8 ReLU neurons for feature 

integration, ultimately generating carbon emission predictions through a single-neuron output layer. 

To enhance training stability, gradient clipping (threshold=5) mitigates explosion risks, batch 

normalization layers between LSTM layers accelerate convergence, and a dropout rate of 0.2 

randomly deactivates neuronal connections to prevent overfitting. These multi-tier regularization 

strategies balance model complexity with generalization capability, ensuring robust modeling of 

dynamic operational patterns. 

Given the annual carbon emission measurement units, this study hypothesizes potential temporal 

causal dependencies among base station features—analogous to sequential relationships in time 

series—by mapping five spatial features (equipment energy consumption, material usage, 

transmission coverage, deployment mode, environmental conditions) into pseudo-time-step 

sequences. This transformation enables the model to uncover nonlinear interdependencies between 

features [5]. 
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The LSTM network's time-step parameter is strictly set to 5, corresponding to the input feature 

count. With 1,000 samples, this configuration achieves equilibrium between capturing feature 

interactions and preventing overfitting, ensuring both sufficient model training and stable predictive 

performance. 

2.4. BP-LSTM hybrid model design 

As shown in Figure 1, the proposed BP-LSTM hybrid model achieves deep integration of temporal 

and static features through a tandem architecture [6]. The LSTM network first performs temporal 

modeling on input features, dynamically capturing long-term dependencies in time series via gating 

mechanisms to generate temporally-aware feature representations. Subsequently, the output vector 

from the LSTM's final hidden layer is concatenated with raw static features to construct a 

multidimensional feature space—a fusion strategy that preserves original data integrity while 

incorporating advanced temporal patterns extracted by the LSTM. This architecture effectively 

combines LSTM's temporal modeling capabilities with BP networks' static feature processing 

strengths, realizing complementary advantages between the two models. 

 

Figure 1: BP-LSTM hybrid model flowchart 

For model training, a phased optimization strategy is adopted: Stage I involves isolated 

pre-training of the LSTM component using backpropagation through time to obtain optimal initial 

parameters; Stage II focuses on BP network training with frozen LSTM parameters to optimize 

feature mapping via error backpropagation; Stage III conducts end-to-end joint fine-tuning by 

relaxing LSTM parameter constraints for holistic model synergy. Tailored to carbon emission 

prediction requirements, the model innovatively employs a composite loss function (Equation 1) 

where the weighting coefficient α is determined as 0.7 through validation set grid search, achieving 

balanced penalization of absolute and relative errors. 

 Loss =  α · MSE +  (1 − α) · MAPE (1) 

2.5. Evaluation metrics and experimental design 

To holistically assess model performance and validate experimental hypotheses, this study 

establishes a multi-dimensional evaluation system. For predictive accuracy assessment, five metrics 

are employed for comprehensive evaluation: Mean Squared Error (MSE), Root Mean Squared Error 
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(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of 

Determination (R²). 

To verify the architectural advantages of the BP-LSTM hybrid model, controlled comparative 

experiments are designed. The baseline group utilizes standalone BP neural networks (static feature 

modeling) and LSTM models (temporal feature modeling) as reference benchmarks, while the 

experimental group adopts the proposed BP-LSTM hybrid architecture. All models share identical 

training and testing datasets to ensure experimental comparability. 

Finally, to further elucidate the model's decision-making mechanism, permutation importance 

analysis is conducted for feature attribution. This method quantifies feature significance by randomly 

shuffling individual feature values and observing the corresponding degradation in model 

performance. 

3. Experimental results analysis 

3.1. Hybrid model performance evaluation 

As evidenced in Table 1, the BP-LSTM hybrid model demonstrates exceptional predictive 

performance in carbon emission forecasting. By synergistically combining the feature extraction 

capabilities of BP neural networks with LSTM's temporal dynamics modeling, the model achieves 

extraordinary explanatory power for carbon emission variations, attaining a coefficient of 

determination (R² = 0.98). This indicates the model captures 98% of the data distribution patterns, 

exhibiting near-perfect goodness-of-fit. In error control, the Mean Absolute Percentage Error (MAPE 

= 3.25%) significantly outperforms typical error levels reported in comparable studies, validating 

minimal relative deviations between predicted and actual values. 

Table 1: Performance evaluation results of BP-LSTM hybrid model on the test set 

MSE RMSE MAE MAPE R² 

70409.49 265.35 214.46 3.25% 0.98 

 

Figure 2: BP-LSTM hybrid model: predicted vs actual values 

As shown in Figure 2, a high degree of concordance between model predictions and actual 

observations can be observed. The majority of data points cluster tightly around the ideal prediction 

line (y = x), exhibiting distinct linear aggregation characteristics, which confirms the model's 

capability to accurately capture primary carbon emission trends. In the mid-to-high emission range 

(8,000–10,000 kg CO₂/year), although minor deviations occur in isolated data points, the overall 

consistency remains robust, with error rates remaining within 10% based on quantile regression 
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analysis. This performance consistency across varying emission magnitudes demonstrates the 

model's strong generalization capacity, enabling reliable predictions for carbon emissions at different 

scales. Notably, the interquartile range of residuals falls within ±5.8% of actual values, as validated 

through bootstrapping (1,000 iterations), further substantiating its adaptability to diverse emission 

prediction scenarios. 

 
Figure 3: BP-LSTM hybrid model: predicted 

error distribution 

 
Figure 4: BP-LSTM hybrid model residual 

distribution 

As depicted in Figure 3, the model prediction errors exhibit an approximately normal distribution, 

with the distribution center tightly clustered around zero and peak density concentrated within the 

±200 kg CO₂/year range. This pattern visually confirms the absence of significant systematic 

overestimation or underestimation biases, demonstrating robust unbiased performance. Specifically, 

approximately 85% of sample errors are constrained within the ±200 kg CO₂/year threshold, while 

only a minimal proportion of extreme outliers exceed the ±400 kg CO₂/year boundary. Such balanced 

error distribution indicates stable predictive capability across varying emission magnitudes, with 

neither localized prediction biases in specific intervals nor extreme error dispersion observed. 

Statistical validation via kernel density estimation (bandwidth=50 kg CO₂/year) further corroborates 

the distribution's leptokurtic nature, highlighting enhanced error concentration relative to Gaussian 

benchmarks. 

As illustrated in Figure 4, the residual scatter plot reveals uniform distribution across all predicted 

value ranges without discernible patterns or trends, satisfying the homoscedasticity assumption of 

regression models. This indicates consistent predictive accuracy across varying carbon emission 

levels, with no evidence of region-specific systematic biases. Furthermore, the symmetric 

distribution of residuals around the zero-line further confirms minimal systematic prediction bias, 

demonstrating the model's ability to accurately capture linear relationships within the data. Such 

homogeneous dispersion characteristics signify robust fitting performance across diverse carbon 

emission intervals, with no degradation in prediction precision attributable to data range variations.  

Table 2: Performance comparison of three models on the test set 

model MSE RMSE MAE R² 

BP 245019.16 494.99 382.10 0.94 

LSTM 757083.83 870.22 700.82 0.98 

BP-LSTM hybrid 70409.49 265.35 214.46 3.25 

 

As demonstrated in Table 2, the BP-LSTM hybrid model significantly outperforms individual 

models across all evaluation metrics for carbon emission prediction tasks. In terms of prediction 

accuracy, the hybrid model reduces the Mean Squared Error (MSE) by approximately 71% compared 

to the standalone BP neural network and by 91% compared to the LSTM model. This substantial 
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improvement primarily stems from the hybrid architecture's ability to simultaneously capture static 

features and temporal dynamics. 

BP Neural Network: Demonstrates relatively strong performance in static feature modeling, 

achieving an R² of 0.94, which indicates a robust correlation between base station attributes and 

carbon emissions. However, its higher RMSE (494.99) and MAE (382.10) reveal limitations in 

modeling complex nonlinear relationships. 

LSTM Model: While excelling in temporal pattern recognition, it exhibits suboptimal predictive 

performance with R² = 0.80, RMSE = 870.22, and MAE = 700.82. This limitation may stem from 

LSTM's insufficient feature extraction capacity when processing static features. 

The BP-LSTM hybrid model achieves complementary advantages through its tandem architecture. 

In feature processing, the LSTM component effectively captures temporal dynamics in base station 

operations (e.g., load fluctuations, environmental temperature variations), while the BP network 

specializes in handling static features (e.g., equipment parameters, deployment configurations). This 

feature fusion mechanism enables comprehensive modeling of diverse carbon emission influencers. 

Three key factors underlie the performance enhancement: 

Feature Synergy: Temporal features extracted by LSTM are deeply integrated with raw static 

features through concatenation, creating an enriched representation space; 

Architectural Complementarity: The tandem architecture integrating BP neural networks and 

LSTM achieves complementary advantages between the two models, preserving the static feature 

modeling capability of BP networks while enhancing the temporal feature capturing capacity of 

LSTM.  

Regularization Efficacy: Multi-level regularization strategies—including dropout and batch 

normalization —reduce overfitting risks, improving generalization. 

4. Carbon emission hotspot identification and analysis 

4.1. Feature sensitivity analysis and sensitivity-based carbon emission influence factor 

analysis 

As shown in Figure 5, the sensitivity analysis reveals the following insights into carbon emission 

drivers: 

Equipment Energy Consumption exhibits the highest sensitivity, directly attributed to energy 

usage being the primary source of carbon emissions, which underscores the critical role of energy 

efficiency optimization in emission reduction. 

Material Usage demonstrates the second-highest sensitivity, indicating a strong correlation 

between base station construction scale and carbon footprint, thereby highlighting the potential 

emission reduction value of material intensification and recycling strategies. 

Environmental Conditions display negative sensitivity, suggesting that optimizing ventilation, 

temperature, and humidity parameters can indirectly reduce emissions by enhancing operational 

efficiency—for instance, lower ambient temperatures may decrease cooling energy demands. 

Transmission Coverage and Deployment Strategies show relatively lower but directionally 

distinct sensitivities: expanded coverage may slightly increase emissions due to elevated equipment 

loads, while distributed deployment approaches (e.g., flexible edge computing node configurations) 

could yield mild synergistic emission reductions through resource optimization. 

This analysis systematically prioritizes emission drivers while elucidating their operational 

mechanisms, providing actionable insights for low-carbon network planning. 
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Figure 5: Sensitivity analysis of carbon emission factors 

4.2. Comprehensive optimization suggestions 

To reduce carbon emissions from 5G base stations, systematic optimization across multiple 

dimensions—including energy utilization, equipment selection, deployment strategies, operational 

management, and renewable energy integration—is imperative. In energy optimization, the 

introduction of high-efficiency power modules (e.g., GaN-based power devices) and intelligent 

energy-saving technologies (e.g., AI-driven dynamic power adjustment) enables on-demand power 

supply, effectively minimizing energy waste during idle periods. For equipment enhancement, 

prioritizing low-power chips and hardware, optimizing thermal management structures (e.g., liquid 

cooling or natural ventilation designs), and improving device durability to extend replacement 

cycles collectively reduce lifecycle carbon footprints. 

Deployment strategies require scientific planning of base station density by balancing coverage 

demands with energy efficiency assessments to prevent over-deployment, while promoting 

infrastructure sharing (e.g., multi-operator co-location) and compact base station designs (e.g., 

millimeter-wave micro base stations) to mitigate redundant energy consumption. Operational 

optimization relies on intelligent monitoring systems and big-data analytics for predictive 

maintenance, allowing timely deactivation or reconfiguration of inefficient equipment to avoid 

unnecessary energy drain. Furthermore, the adoption of renewable energy systems—such as solar 

photovoltaic panels and small-scale wind turbines tailored to local conditions—significantly 

reduces reliance on traditional power grids, particularly in regions with abundant solar irradiation or 

wind resources. 

This cohesive framework integrates technological innovation, operational intelligence, and 

sustainable practices to holistically address carbon reduction challenges in 5G infrastructure. 

5. Conclusion 

This paper proposes a BP-LSTM hybrid model for carbon emission prediction and low-carbon 

optimization in 5G base stations, which integrates static feature processing and temporal 

dependency modeling capabilities through a serial fusion architecture. Based on the prediction 

results, systematic emission reduction strategies are formulated. The core findings are as follows: 

1.A high-precision BP-LSTM hybrid prediction model was developed, which effectively 

combines the BP network's capability in static feature processing with LSTM's advantage in 
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capturing temporal dependencies through serial fusion architecture. The model demonstrates 

superior performance with R²=0.98 and MAPE=3.25% on the test set, significantly outperforming 

single models. 

2.Feature sensitivity analysis quantitatively revealed the impact levels of different factors on 

carbon emissions. Equipment energy consumption and material usage were identified as critical 

determinants of 5G base station emissions, while environmental conditions showed negative 

correlation effects. 

3.Based on predictive modeling and feature analysis, a multidimensional energy-saving strategy 

framework was proposed, encompassing energy optimization, equipment enhancement, deployment 

improvement, operation maintenance, and renewable energy integration. This framework provides 

data-driven decision support for low-carbon development of 5G networks. 

Future research will focus on expanding dataset scale with additional environmental and 

operational factors, exploring deep reinforcement learning for dynamic energy management, and 

developing customized prediction models adapted to different geographical regions and climatic 

conditions. These advancements aim to further improve prediction accuracy and practical 

applicability. 
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