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Abstract: Multimodal sensor fusion technology significantly improves the perception and 

decision-making capabilities of medical and industrial robots by integrating multi-source 

information such as vision, touch, and mechanics. This article conducts a comparative 

analysis of the divergent applications and shared characteristics within two predominant 

domains: medical robotics, which emphasizes surgical safety and employs tactile-visual 

collaborative technologies to enhance operational precision while addressing data 

compliance challenges through a privacy protection framework; and industrial robotics, 

which prioritizes efficiency and safety in dynamic environments by integrating dynamic 

vision systems and high-precision ranging devices to facilitate real-time obstacle avoidance 

and fault diagnosis. The study found that although the scene goals are different (medical 

focuses on biocompatibility, industry focuses on cost efficiency), both face challenges such 

as sensor redundancy, data heterogeneity, and long-term stability. In the future, it is necessary 

to promote cross-domain technology interoperability, develop a lightweight adaptive fusion 

framework, and build an ethical and standardization system to promote the universalization 

and large-scale application of multimodal fusion technology. 

Keywords: Multi-modal sensor fusion, medical robot, industrial robots, human-robot 

collaboration 

1. Introduction  

Multimodal sensor fusion has emerged as a pivotal research area in medical and industrial robotics. In 

medical applications, precise manipulation and real-time feedback are paramount for patient safety. 

Industrial settings increasingly demand efficient collaboration and human-computer interaction in 

complex environments. Traditional unimodal sensors struggle to meet the requisite precision and 

robustness due to their limited perceptual dimensionality. Multimodal fusion compensates for these 

limitations by integrating multi-source data—vision, tactile, and mechanical inputs—and fosters 

cross-domain technological innovation. 

Drawing upon medical robotics, specifically the Da Vinci system, this study affirms the 

incorporation of tactile and visual modalities. However, hardware limitations and data acquisition 

issues impede research progress. Conversely, industrial robots employ multi-modal 

collaboration—dynamic vision and lidar—to achieve environmental perception and real-time 

decision-making in intricate tasks. Despite disparate applications, both domains grapple with sensor 

redundancy, data heterogeneity, and privacy. This article contrasts technical approaches, applications, 
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and challenges in multi-modal sensor fusion across medical and industrial sectors, exploring shared 

needs and divergent trends to inform cross-domain technological innovation. 

2. Application of multimodal sensor fusion in medical surgery 

2.1. Fusion of haptics and vision in surgical robots 

In the realm of visual perception, the Da Vinci Xi system facilitates three-dimensional depth 

perception via stereoscopic vision, thereby enhancing surgical trajectory planning [1]. However, its 

clinical orientation makes it difficult for research institutions to obtain hardware and data, limiting 

research progress. In pursuit of this objective, the Da Vinci Research Kit (dVRK) was developed, 

enabling researchers to comprehensively engage with the control hierarchy and data flow. This 

initiative offers an open-source software and hardware platform for international research collectives, 

thereby reducing barriers to research and fostering collaborative efforts.[2]. Therefore, multi-tool 

switching and automated tumor resection technology are realized. By designing interchangeable 

instrument interfaces (such as Clevis Mount and Jaw Mount), the system can directly complete the 

autonomous switching of palpation probes, scalpels, clamps, and syringes in the body cavity without 

repeatedly entering and exiting the cannula. The tool change adapter (TCA) facilitates the robotic 

arm's execution of 30 consecutive grasping actions devoid of visual feedback, utilizing passive guide 

grooves and self-locking mechanisms. This innovative design markedly diminishes the temporal 

inefficiencies associated with conventional tool interchange, thereby enhancing surgical efficacy [3]. 

Real-time intraoperative fluorescence (e.g., with indocyanine green) guidance has shown great 

potential in helping guide surgeons in both simple and complex surgical interventions, and as a result, 

fluorescence imaging was introduced to the Da Vinci Surgical System in 2011 and has been standard 

equipment since 2014[4]. 

Within the realm of tactile sensors, fiber Bragg grating (FBG) exhibits distinct advantages, 

including its compact dimensions, excellent biocompatibility, elevated sensitivity, capacity for 

sterilization, cost-effectiveness, and diminutive size [5]. It solves the problem of insufficient force 

measurement in minimally invasive robotic surgery [6]. However, temperature sensitivity and 

dynamic response are insufficient, and future research will explore the potential of force feedback in 

performance improvement, surgical training, and skill assessment. Piezoelectric sensors have fast 

dynamic responses and are suitable for vibration signal detection, such as suture tension monitoring. 

Capacitive sensors are highly sensitive and can be used in tactile skin development. However, 

piezoelectric and capacitive sensors experience stress relaxation under long-term pressure, which 

may affect the accuracy of measurements. A comprehensive assessment of sensor performance across 

various in vitro and in vivo evaluations, the advancement of algorithms for stress relaxation 

compensation, enhancements in sensor sealing technologies, and a thorough examination of their 

efficacy and safety in real-world clinical applications are imperative [7]. 

Robot-assisted suturing cases show that in tissue puncture tasks, direct force feedback can 

significantly reduce the maximum force applied from 2.54 N to 2.49 N, reduce tissue damage and the 

number of impacts from 1.12 times to 1.08 times, and shorten the task completion time from 57.05 s 

to 51.73s. In knotting tasks, visual force feedback helps to improve the quality of suture knots and the 

consistency of force, but when used alone, it is easy to cause suture breakage or too loose suture knots. 

Optimal outcomes are attained when direct haptic feedback is integrated with visual feedback 

mechanisms (evidenced by only 3 out of 75 ligation tasks exhibiting looseness and no instances of 

breakage). This dual feedback approach not only mitigates tissue trauma and adverse effects through 

direct haptic input but also enhances the stability of suture knots and maintains consistent force 

application, facilitated by visual feedback [8]. 
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Surgical robots are designed to improve surgical precision and flexibility. Surgeons use 

multimodal sensing technology to control robotic arms. Compared with single-mode sensors, optical 

and mechanical dual-mode sensors can enhance the accuracy, safety, and robustness of 

human-machine interaction systems. The latest sensing technology achieves optical sensing and 

shadow recognition, mechanical sensing, and touch force detection by building a parallel structure of 

perovskite and graphene. The integration of these two elements establishes a synergistic framework 

for instantaneous, multi-faceted feedback, thereby enhancing the dynamics of human-machine 

interaction [9]. 

2.2. Application of sensor fusion in medical monitoring 

With the popularization of medical IoT devices, the integration of multimodal sensor data (such as 

physiological signals, environmental parameters, biochemical indicators, etc.) has become the key to 

improving the accuracy and real-time performance of patient monitoring. The multi-sensor fusion 

wearable health monitoring system allows the execution of biometric and medical monitoring 

applications. It offers haptic feedback modalities and intuitive visual indicators contingent upon the 

user's health metrics. The aggregated biometric data can be utilized for real-time monitoring of the 

patient's health condition or to acquire critical information for subsequent medical evaluation and 

analysis [10]. 

However, traditional centralized processing methods are difficult to meet medical data compliance 

requirements due to the risk of privacy leakage. The privacy protection framework based on federated 

learning (such as PHMS-Fed) solves this contradiction through distributed collaborative training. The 

framework uses adaptive tensor decomposition technology while avoiding raw data transmission, 

significantly reducing privacy risks. In authentic medical datasets, exemplified by MIMIC-III, the 

system attained a physiological monitoring precision of 0.9386, a privacy safeguarding metric of 

0.9845, and a fusion accuracy of 0.9591, surpassing conventional methodologies by 23% to 25% 

[11]. 

3. Multimodal sensor fusion in industrial robots 

3.1. Sensor types and scenario requirements 

Industrial robots achieve accurate perception and efficient collaboration in complex environments 

through the collaborative work of multimodal sensors. 

Within the realm of visual sensing technologies, RGB-D cameras, exemplified by devices like the 

Kinect, are employed for three-dimensional environmental modeling, obstacle recognition, and 

human tracking. These systems facilitate the real-time modulation of a robot's motion trajectory, 

thereby enabling the avoidance of collisions with humans or other entities. Event cameras, such as the 

dynamic and active-pixel vision sensor (DAVIS), have low latency and high dynamic range for 

high-speed robotic operations. Combining traditional global shutter cameras and event-based sensors 

in the same pixel array can significantly improve the response time for real-time scene analysis, 

especially for dynamic industrial environments [12]. 

As a distance sensor, lidar is widely used in human perception and is often used in combination 

with visual sensors. For example, lidar is combined with visual sensors for human detection and 

behavior understanding to achieve safe and efficient collaboration. Lidar provides high-precision 

distance measurement and environment modeling capabilities in these applications, helping robots 

better perceive and understand human behavior [13]. 

In the realm of industrial wearables, inertial measurement units (IMUs) serve a pivotal role in 

monitoring operator movements, which are subsequently analyzed and categorized to govern robotic 

behavior. Notably, IMU sensors are capable of discerning both static and dynamic gestures, which 
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facilitate the command of the robot, with these movements being processed and classified through 

artificial neural networks (ANNs) [14]. In addition, Leap Motion is used for gesture recognition in 

fine-scale collaborative tasks as input commands for the robot system. It can enhance the robot's 

perception ability and improve the interaction accuracy in combination with Kalman filtering [15]. 

The core of the design of multimodal sensors for industrial robots lies in scene adaptability and 

functional complementarity. Technically, RGB-D cameras employ synchronous frame data for 3D 

modeling of static scenes, offering global geometric insights, though algorithmic optimization is 

needed to address depth perception noise in reflective, transparent, and distant objects. Event cameras, 

utilizing asynchronous event streams, excel in microsecond responses to dynamic targets, 

circumventing motion blur. Lidar, leveraging active laser ranging, provides stable, high-precision 

point clouds under varied lighting, compensating for RGB-D cameras' limitations in distance and 

material sensitivity. IMU and Leap Motion, through inertial data, dissect human motion and gesture 

tracking, establishing a hierarchical interactive framework of intent screening and precise execution. 

These sensors, encompassing geometric reconstruction, dynamic response, high-precision ranging, 

human motion capture, and fine gesture recognition, address the perception requirements of 

environment-human-robot interaction. The system employs multi-source data fusion—such as 

lidar+RGB-D's geometric-semantic complementarity and IMU+Leap Motion's action-intention 

coordination—to enhance robustness. 

3.2. Multimodal data fusion methods and case studies 

Early fusion (raw data) refers to directly fusing raw data of different modalities into a joint model in 

the early stage of the model[16]. 

Late fusion, a decision-layer approach in multimodal data processing, independently trains models 

on each modality, generating local decisions. Subsequent integration occurs via rules, voting, or 

weighted methods. This method's flexibility and fault tolerance render it suitable for complex tasks 

involving heterogeneous sensors or dynamic environments, such as those shared by humans and 

mobile robots in remotely operated scenarios. The robot's enriched 360-degree view, augmented with 

interactive elements, directs attention to information-rich areas [17]. Using a 360-degree camera, 

whose frames are processed using a YOLO-based convolutional neural network (CNN) framework, 

the perception of human operators and robots is enhanced in some way [18]. 

Another technique is minimum redundancy-maximum relevance (mRMR). The goal of this 

method is to find those metrics that minimize data redundancy since removing a feature from a highly 

interdependent set will not result in a change in the information they provide; at the same time, the 

method must maximize the relevance to the target class [19]. The algorithm has an unsupervised 

version (UmRMR) that has been used for predictive maintenance [20] and structural health 

monitoring of rotating machinery [21]. 

Mid-term fusion integrates multi-source data via feature concatenation and dimensionality 

reduction [21]. Principal Component Analysis (PCA), a classic unsupervised method, serves in 

feature extraction and selection. PCA transforms features, typically reducing dimensionality to retain 

only those explaining maximal variance, thus compressing and reconstructing the feature space [22]. 

Employed in industrial contexts like induction motor fault diagnosis, PCA also has nonlinear variants, 

such as kernel PCA, to enhance nonlinear feature expression [23]. 

However, with the advent of deep learning, researchers have increasingly favored adaptive fusion 

frameworks predicated on deep neural networks. For instance, deep learning feature fusion, an 

adaptive method rooted in DCNN, addresses multi-sensor feature extraction by selecting the 

appropriate fusion technique relative to the fusion stage. The capacity of DNNs to fuse data across 

varying layers and stages underpins their adoption in our approach. The adaptive network performs 

low-level input data fusion, extracts basic features, integrates these into high-level features and 
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decisions at an intermediate level, and subsequently, at a higher level, recombines features and 

decisions to yield the final prediction [22]. 

Despite the promise of camera-radar fusion, its limitations necessitate innovation. I propose a 

novel proposal-level fusion method for 3D object detection, associating image proposals with radar 

points in polar coordinates to address coordinate system and spatial attribute disparities. Through 

iterative cross-attention-based feature fusion layers, adaptive exchange of spatial context information 

between camera and radar streams achieves robust and focused fusion. Evaluation on the nuScenes 

test set demonstrates a mean Average Precision (mAP) of 41.1% and a NuScenes Detection Score 

(NDS) of 52.3%, surpassing the camera-only baseline by 8.7 and 10.8 points, respectively, and 

outperforming lidar-based approaches [23]. 

4. Comparative analysis & future development direction 

4.1. Comparative analysis 

Multimodal sensor fusion in medical and industrial robots exhibits divergent applications and shared 

imperatives. Medical robots prioritize surgical precision and patient safety, integrating tactile 

feedback (e.g., fiber Bragg gratings, piezoelectric sensors) with stereo vision for minimally invasive 

procedures like sutures and biopsies. Technical challenges reside in biocompatible materials and 

tactile dynamic compensation algorithms, while multimodal health monitoring is constrained by 

patient data privacy regulations. Industrial robots emphasize collaborative efficiency and dynamic 

environmental safety, employing event cameras, lidar environmental modeling, and wearable devices 

for real-time obstacle avoidance and fault diagnosis. Technical maturity is driven by 

cost-effectiveness. Despite differences in core goals, key technologies, scenarios, and technical 

status(Table 1), both domains require multimodal complementarity to overcome single-sensor 

limitations, reflecting cross-domain collaboration and enabling technology transfer (e.g., medical 

force control algorithms in industrial precision assembly). 

Table 1: Horizontal comparison table 

Comparison 

Dimensions 
Medical Robots Industrial Robots Commonalities 

Core Goals 
Improving surgical precision 

and safety 

Improving the efficiency 

and safety of 

human-machine 

collaboration 

Balancing accuracy, 

real-time performance, and 

robustness 

Key 

technologies 

Tactile feedback 

(FBG/piezoelectric sensors), 

stereo vision, fluorescence 

imaging 

Dynamic vision (event 

camera), lidar 

environment modeling, 

wearable devices 

Multimodal 

complementarity needs 

Typical 

scenarios 

Robot-assisted suturing, 

minimally invasive biopsy 

Dynamic obstacle 

avoidance, motor fault 

diagnosis 

Rely on multi-modal 

collaboration to improve 

performance 

Technology 

Status 

Clinical validation stage 

(such as the Da Vinci system) 

Large-scale deployment 

(e.g., collaborative robots) 

Medical care focuses on 

ethical compliance, while 

industry focuses on cost and 

efficiency 
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4.2. Future development direction 

Advancements in medical technology necessitate deeper R&D into biocompatible sensors and 

dynamic compensation algorithms, like flexible electronics with self-healing structures, to enhance 

the stability of long-term implanted devices. Industrially, lightweight spatiotemporal fusion 

algorithms should be developed, strengthening event camera and lidar collaborative perception for 

optimized real-time decision-making.  

Sensor redundancy optimization requires exploring dynamic modal selection mechanisms, 

hardware-algorithm co-design, and cross-domain redundancy governance strategies. 

Cross-domain collaboration can leverage AI-driven adaptive fusion frameworks to overcome 

physical boundaries, enabling technical migration of force control algorithms and edge computing 

architectures. 

Ethically and for standardization, dynamic privacy protection mechanisms and cross-industry 

security assessment systems are crucial to balance innovation and data compliance. Co-constructing 

new sensors and open-source ecosystems will promote technology adoption across sectors. Future 

research should emphasize multidisciplinary integration to advance adaptive algorithms and explore 

technology-ethics-industrialization collaboration, ensuring the reliability of intelligent robot systems. 

5. Conclusion 

Multimodal sensor fusion technology has significant application value in the fields of medical and 

industrial robots. In medical surgery, the combination of visual and tactile feedback improves the 

accuracy and safety of minimally invasive operations, and the introduction of a privacy protection 

framework ensures that medical data is legal and compliant. In industrial scenarios, event cameras 

and lidars work together to optimize the efficiency of dynamic obstacle avoidance, and proposal-level 

fusion methods significantly improve target detection performance through cross-modal feature 

interaction. However, the two major fields still face common challenges, such as breaking through 

the long-term stability of sensors and reducing the deployment cost of multimodal systems. It is worth 

noting that there is great potential for cross-domain technology interoperability. For example, stress 

compensation technology for medical tactile skin may be applied to industrial precision assembly 

scenarios, and industrial edge computing solutions are expected to accelerate the real-time processing 

efficiency of medical data. The combination of flexible tactile sensors in the medical field and 

industrial-grade dynamic obstacle avoidance algorithms may give rise to a new generation of 

adaptive robot systems. 
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