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Abstract: Retrieval-augmented generation (RAG) has become a transformative framework in 

Natural Language Processing (NLP). It contributes to the generation process by retrieving 

relevant information from external knowledge bases, thus making the responses more 

accurate and contextualized. Recent developments in RAG have renewed interest in 

optimizing RAG frameworks, such as improving the efficiency of the retrieval module, query 

reconstruction, refinement, ranking mechanisms, and resolution of hallucinations. However, 

RAG still faces significant bottlenecks, especially when it comes to understanding knowledge 

sources and user prompts. Prompt enhancement is a critical but not explored aspect of the 

RAG field. Inspired by Refine Query for Retrieval Augmented Generation (RQ-RAG), this 

paper proposes prompt pruning and prompt enhancement as innovative solutions to improve 

prompts iteratively for better retrieval and generated results. It also attempts to expand the 

dataset to cover multiple tasks in various scenarios. Experimental comparisons between RQ-

RAG and PromptCraft-RAG (PC-RAG) show competitive performance: RQ-RAG achieves 

68.3 (single-hop Question Answering (QA)) and 49.7 (multi-hop QA), while PC-RAG scores 

68.1 and 51.7, respectively.  

Keywords: Retrieval- augmented Generation (RAG), Refine Query for Retrieval Augmented 

Generation (RQ-RAG), Prompt Enhancement. 

1. Introduction 

Retrieval-augmented generation (RAG) performs dynamic knowledge retrieval and generative 

processes, enabling systems to deal with complex and knowledge-intensive tasks [1]. Despite this, its 

overall performance can be severely impacted if the input prompts are of poor quality. These prompts 

might be ambiguous, too short, or lack sufficient context, which can lead to retrieval failures, 

hallucinations, or output results that do not match the user's intent [2]. These issues reflect a 

significant challenge facing current RAG systems: the lack of a mechanism for iteratively refining 

prompts and making the retrieval and generation process consistent. 

Much work has been striving to improve retrieval strategies or generator architectures. For 

example, the foundational RAG frameworks set up the retriever-generator paradigm, and later efforts 

like Refine Query for Retrieval Augmented Generation (RQ-RAG) introduced query refinement 

techniques to improve retrieval relevance [3, 4]. However, these methods mainly use the prompts as 

static inputs but don’t consider the enhancement of the prompts. Slight changes to the prompts, such 

as disambiguation or decomposition, can substantially impact the retrieval results [5]. Despite this, in 
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real-world applications, existing systems often cannot do refinement tasks, especially when there are 

multimodal inputs and prompt lengths are restricted. 

This work addresses these challenges by introducing context-based prompt enhancement, which 

dynamically improves user queries to enhance retrieval and generation. Building on the principles of 

query refinement proposed by RQ-RAG, thesis propose PromptCraft-RAG (PC-RAG), which has 

three crucial innovations: expanding the dataset with queries from different scenarios, applying auto-

merging techniques to produce more structured and semantically meaningful truncated text; and using 

relation-entity extraction techniques to reduce computational costs. This work aims to increase the 

consistency between user queries and system responses by focusing on these areas, making the RAG 

system more adaptable to various real-world tasks. The rest of the paper has been divided into four 

parts. Section 2 reviews the dataset constructed for this experiment, and Section 3 lays out the 

theoretical dimensions of the research, which is concerned with the methodology. Section 4 presents 

the experimental results and analysis. Finally, Section 5 gives a summary and a discussion of possible 

future directions. 

2. Dataset 

2.1. Dataset used in RQ-RAG 

The dataset for training and evaluating PC-RAG was designed to handle various query scenarios [6, 

7]. It contains single-hop question answering (QA), multi-hop QA, ambiguous queries, and 

instruction-following tasks. For single-hop QA tasks, the dataset has three distinct components. The 

AI2 Reasoning Challenge (ARC-C) dataset includes 1,172 multiple-choice questions that assess 

commonsense reasoning. open-domain QA (PopQA) provides a long-tail subset of 1,399 instances, 

focusing on factual questions. OpenbookQA consists of 500 multiple-choice questions that require 

answers based on a predefined set of facts. These datasets evaluate the model’s ability to manage 

straightforward queries. 

The dataset also includes multi-hop QA tasks, assessing the model’s ability to integrate 

information from various sources to provide coherent answers. The HotpotQA dataset has questions 

linked to ten passages, with each question depending on two relevant documents for accurate answers. 

Similarly, 2WikiMultiHopQA features complex queries linked to ten passages, two of which apply 

to the question. MuSiQue includes questions linked to twenty candidate documents and requires two 

to four hops to answer.  

Another essential part of the dataset focuses on ambiguous queries. The Australian Skills Quality 

Authority (ASQA) dataset is designed to evaluate the model’s ability to handle unclear or 

underspecified questions. It requires the model to clarify vague queries before generating responses. 

Additionally, it contains collections like LIMA, WizardLM, Open-Orca, OpenAssistant, and Chat 

Generative Pre-Trained Transformer 4 (ChatGPT4)-Alpaca. These tasks require the model to follow 

complex instructions and generate structured, contextually appropriate responses. 

2.2. Data collection and annotation 

In this study, thesis have carefully expanded the dataset. This extensive dataset consists of 42,810 

instances that help the model to effectively cope with various scenarios and query types in the 

experiments, including single-hop question answering, multi-hop reasoning, vague querying, and 

instruction following tasks. Apart from that, thesis also automated the dataset annotation process 

using ChatGPT (gpt-3.5-turbo-0125), which extracts raw data into a structured and usable format. It 

generates refined queries, searches for relevant information, and produces responses based on 

retrieved context. This automated flow provides consistency in dataset annotation while reducing the 

need for manual effort for such large-scale tasks. 
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2.3. Dataset construction pipeline 

The dataset was constructed using a clear pipeline to ensure high quality and relevance. First, thesis 

categorized all tasks into specific classes, such as multi-turn dialogues, query decomposition, and 

query disambiguation. Next, ChatGPT is employed with predefined prompt templates to refine 

queries to meet the requirements of the retrieval tasks. Then, relevant contexts were retrieved using 

DuckDuckGo and other sources. Finally, thesis used ChatGPT again to generate renewed responses 

based on the refined queries and retrieved contexts. This systematic approach ensured that the dataset 

was rich, diverse, and suitable for training and evaluating the framework. 

3. Results and discussions 

The key idea is to refine prompts before retrieving information by explicitly performing query-

rewriting, decomposition, and disambiguation. The implementation consisted of three core 

components: Dataset Construction, Generator Training, and Sample Strategies. Each element was 

designed to align with the system’s goal of refining queries and generating contextually accurate 

responses. PC-RAG implements innovative ideas mainly in Dataset Construction and Generator 

Training sessions. 

3.1. Dataset construction 

In RQ-RAG, training data was constructed to mirror the inference-time workflow. Generally speaking, 

it is significant to tune the given trivial input and output the dataset into the format of input and 

generate the final output after several operations. The transformation process can be denoted as: 

 (𝑋𝑜𝑟𝑖𝑔𝑖𝑛, 𝑌𝑜𝑟𝑖𝑔𝑖𝑛) → (𝑋𝑜𝑟𝑖𝑔𝑖𝑛, 𝑆𝑃𝐸𝐶𝐼𝐴𝐿𝑡𝑦𝑝𝑒 , 𝑄𝑖, 𝑡𝑦𝑝𝑒, [𝐷𝑖1, ⋯ , 𝐷𝑖𝑘],⋯ , 𝑌𝑛𝑒𝑤) (1) 

In this workflow, the original input-output pairs are represented by (𝑋𝑜𝑟𝑖𝑔𝑖𝑛 , 𝑌𝑜𝑟𝑖𝑔𝑖𝑛 ), and i 

indicates the iteration turn. 𝑆𝑃𝐸𝐶𝐼𝐴𝐿𝑡𝑦𝑝𝑒 refers to the special toke, denoting the actions the model 

needs to perform, which are represented by Type: rewrite, decompose, or disambiguate. Qi, type 

means the refined query generated in iteration i. 𝐷𝑖1 to 𝐷𝑖𝑘 is the top-k relevant documents retrieved, 

and 𝑌𝑛𝑒𝑤is the final answer generated in the last iteration. In one dataset, the type of all input-output 

pairs is deliberately selected to be of the same type. To perform dataset construction, the system first 

begins processing the initial question 𝑋𝑜𝑟𝑖𝑔𝑖𝑛. The datasets are classified into three types: rewrite, 

decompose, and disambiguate, and the system utilizes a pre-defined prompt corresponding to each 

type to generate a refined query for each type. This query is then leveraged to retrieve information 

from external data sources. Based on the query from the previous iteration, the type, and its retrieved 

content, Large Language Model (LLM) is prompted to generate a new response and iteratively 

execute the response generation process. 

However, a new technique called auto-merging has been implemented in PC-RAG for this 

transformation process. The first step is to truncate the whole context into smaller sections based on 

semantic meanings. As shown in Figure 1, this truncation process is performed recursively, from 

context level to paragraph level, then sentence level, and finally, word level. It should be noted that 

the structure built can be any random tree. Besides, the tree can be unbalanced since the number of 

children depends on how many sections can be divided according to semantic meanings. For any 

given query, the workflow starts from leaves and selects nodes with a relevancy score higher than the 

predefined threshold. There are no top-k restrictions, so an arbitrary number of nodes is acceptable. 

For each parent node, if more than half of the child nodes are regarded as relevant to the query, the 

system will select the parent instead of the number of child nodes. The system recursively performs 

the pruning process until no parent node has more than half of the “relevant” children’s nodes. 
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Eventually, N1, N2, … Nk are calculated, where Ni is the i-th node selected. Ni can be any node from 

root to leaf. The critical steps can be summarized into the formula: 

 (𝑋𝑜𝑟𝑖𝑔𝑖𝑛, 𝑌𝑜𝑟𝑖𝑔𝑖𝑛) → (𝑋𝑜𝑟𝑖𝑔𝑖𝑛, 𝑆𝑃𝐸𝐶𝐼𝐴𝐿𝑡𝑦𝑝𝑒 , 𝑄𝑖, 𝑡𝑦𝑝𝑒, [𝑁1, 𝑁2⋯ ,𝑁𝑘],⋯ , 𝑌𝑛𝑒𝑤) (2) 

 

Figure 1: Auto merging example (picture credit: original) 

The application of Auto-Merging techniques in Dataset Construction has many advantages. The 

truncated texts are more structured, making it easier for human readers to read and debug. Texts are 

getting more semantically meaningful and coherent, making it easier for LLM to generate answers. 

In the previous method utilized in RQ-RAG, sentences are naively cut in the middle, leaving behind 

many meaningless starting and endings. Despite the advantages over traditional methods, there also 

exist possible limitations. Auto-merging may add overhead to calculation; semantic division and 

merging children are all computational burdens. Additionally, the structure becomes more complex 

and, hence, more complicated to implement. However, in this case, thesis get sufficient computational 

resources, and the scale of the dataset is relatively small, so not much calculation is needed. 

3.2. Generator training 

This step aims to train the model to decide the appropriate special operations to perform and when to 

finish the decision tree loop, enhancing the performance in generating final answers. The model was 

trained auto-regressively to maximize the likelihood of generating correct responses given inputs, 

refined queries, and retrieved documents. In the implementation of RQ-RAG, the training objective 

was defined as: 

 ℒ = 𝑚𝑎𝑥 𝐸(𝑥,𝑦)~𝐷 [𝑙𝑜𝑔 𝑝𝑀 (𝑦|𝑞1, 𝑑1, ⋯ , 𝑞𝑖 , 𝑑𝑖, 𝑥)] (3) 

In this formula, L represents the likelihood that thesis aim to maximize. M denotes the model 

parameters. The expectation 𝐸(𝑥,𝑦)∼𝐷  averages over the dataset D, while the term 

𝑝𝑀( 𝑦 ∣∣ 𝑞1, 𝑑1, … , 𝑞𝑖, 𝑑𝑖, 𝑥 ) indicates the probability of the model M generating the response y given 

the input x and the refined query 𝑞𝑖 with the retrieved document di at step i. In the previous trials of 

RQ-RAG, the model is trained on 8 NVIDIA H800 GPUs with 80GB memory, using a learning rate 

of 2 × 10−5 with 3% warmup steps. The maximum input length is set to 4096 tokens to accommodate 

the extended context length of the dataset. During the experiment, however, although the typical 
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required vRAM size to train Llama2-7B is well below 80 GB, the model overwhelmed the server by 

signaling CUDA OOM, which was allocated 100 GB vRAM and GPU clusters.  

PC-RAG employs the Relation-Entity Extraction technique to tackle the issue of putting 

everything into training, which is relatively computationally expensive. An entity is a distinct object 

or concept in a given domain, such as a person, place, organization, or object, represented by a unique 

name or identifier (e.g., "Einstein," "Paris," "Cat"). A relation defines the connection or association 

between two or more entities, describing how they relate (e.g., "Einstein was born in Ulm"). Figure 

2 presents a network of entities and the relations between them, aiming to give an intuitive 

understanding of the two concepts. To implement Relation-Entity Extraction in this system, the first 

procedure is to extract entities respectively from 𝑞1, 𝑑1, 𝑞2, 𝑑2… , 𝑞𝑛, 𝑑𝑛 . The next step is to de-

duplicate the entities in each pair of (𝑞𝑖, 𝑑𝑖), reducing the entity-relation graph to its basic form. After 

the de-duplication, the graph will be transformed into the context 𝐶𝑖 which is recognizable by the 

training model. During this process, every pair of (𝑞𝑖 , 𝑑𝑖) is transferred into 𝐶𝑖. After completing the 

entire workflow, the model training process can start. The training objective can now be denoted as: 

 ℒ = 𝑚𝑎𝑥 𝐸(𝑥,𝑦)~𝐷 [𝑙𝑜𝑔 𝑝𝑀 (𝑦|𝑐1, 𝑐2, ⋯ , 𝑐𝑖, 𝑥)] (4) 

 

Figure 2: Relation-entity extraction (picture credit: original) 

Relation-entity extraction reduces the computation burden significantly. By extracting entity-

relation graphs and converting them to interpretable context, this strategy performs data enhancement 

to the retrieved contexts, together with query enhancement, bi-directionally fine-tuning the model. 

Nevertheless, the process of de-duplicating, graph construction, and graph-to-text conversion can still 

cause complex overheads. 

4. Experimental results 

This section reports the experimental results of the proposed PC-RAG model, which builds upon the 

RQ-RAG framework with specific optimizations. To provide context, thesis first summarize the 

performance of RQ-RAG as reported in its original paper. Then, thesis present the training progress 

and evaluation of PC-RAG on both single-hop and multi-hop QA tasks. 

4.1. Performance of RQ-RAG 

The experimental results in the paper "RQ-RAG: Learning to Refine Queries for Retrieval 

Augmented Generation" are divided into several key areas, including model training results and final 

outputs across various tasks [8, 9]. In single-hop QA, it was tested on datasets such as ARC-C, PopQA, 

and OpenbookQA. RQ-RAG surpassed LLama2-7B (Zero Shot) by an average of 33.5% in retrieval 

settings. It also outperformed models trained on task-specific or curated datasets without the search-
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augmented intermediate step. Compared to SAIL-7B, the state-of-the-art model, RQ-RAG achieved 

an average performance increase of 20.3% across the three datasets. Additionally, it surpassed Self-

RAG, the previous state-of-the-art, by 1.9% on average, despite using significantly fewer training 

samples (40,000 compared to 150,000). 

In multi-hop QA tasks, RQ-RAG was evaluated on datasets including HotpotQA, 

2WikiMultiHopQA, and Musique. It demonstrated substantial improvements over zero-shot models 

and those trained on individual datasets without the search-augmented step. The model achieved an 

average performance improvement of 22.6% across these datasets. Furthermore, RQ-RAG 

outperformed robust baselines like Chain-of-Thought and Chain-of-Note, which use ChatGPT as 

their backbone. This achievement is noteworthy because RQ-RAG relies on a smaller backbone 

model compared to ChatGPT. 

4.2. Model training and progress 

PC-RAG was fine-tuned using the Llama2-7b-hf architecture. During training, the learning rate was 

gradually reduced in a linear schedule, as shown in Figure 3. The initial learning rate was set to 

1.9375e-5 and progressively decreased to 0 by the final training step. This approach facilitated stable 

and effective parameter updates throughout the training process. The training loss, visualized in 

Figure 4, consistently decreased as the training progressed. Initially, the loss was 8.77 and gradually 

reduced to 3.01 by the final step. This steady decline demonstrates that the model successfully learned 

from the data and effectively minimized the error during fine-tuning. 

 

Figure 3: Changes in learning rate during training (picture credit: original) 

 

Figure 4: Losses at each step of training (picture credit: original) 
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4.3. Performance on single-hop and multi-hop QA tasks  

The performance of PC-RAG was evaluated on three single-hop QA datasets: ARC-C, POPQA, and 

Open Book QA (OBQA). The results are summarized Table 1. PC-RAG achieved slightly improved 

performance on POPQA (+1.2) compared to RQ-RAG. However, it showed a slight decrease on 

OBQA (-2.2). The overall average performance of PC-RAG remained close to that of RQ-RAG, 

indicating that the optimizations did not lead to significant changes in single-hop QA performance. 

However, the evaluation of multi-hop QA datasets revealed more pronounced improvements with 

PC-RAG. Based on the results showcased in Table 2, PC-RAG outperformed RQ-RAG across all 

multi-hop QA datasets. The improvements were most notable on ARC-C (+2.2) and OBQA (+2.8). 

The average performance of PC-RAG (51.7) exceeded that of RQ-RAG (49.7), highlighting the 

effectiveness of the proposed optimizations in enhancing reasoning capabilities for multi-hop 

questions. 

Table 1: Single-hop task performance comparison 

Model ARC_C POPQA OBQA AVG. 

RQ-RAG 68.3 57.1 79.4 68.3 

PC-RAG 68.7  58.3  77.2  68.1 

Table 2: Multi-hop task performance comparison 

Model ARC_C POPQA OBQA AVG. 

RQ-RAG 62.6 44.8 41.7 49.7 

PC-RAG 64.8 45.7 44.5 51.7 

 

Based on the experimental results, the training progress and evaluation results indicate that PC-

RAG effectively learned during fine-tuning, as evidenced by the consistent reduction in training loss. 

The optimizations introduced to the model had a stronger impact on multi-hop QA tasks, where 

reasoning complexity is higher. Single-hop QA performance remained stable, with minor variations 

across datasets. These results suggest that the modifications in PC-RAG enhanced its ability to tackle 

more challenging reasoning tasks while maintaining competitive performance on simpler ones. 

5. Conclusions 

This paper presents an enhanced implementation of RQ-RAG, a framework that improves LLMs by 

refining queries through rewriting, decomposing, and disambiguating. Three key contributions are 

introduced: (1) Dataset Enlargement, where the scope is expanded and annotations are automated 

using ChatGPT to handle diverse query scenarios. It includes single-hop QA, multi-hop reasoning, 

and ambiguous queries; (2) Auto-Merging, a technique that segments large contexts into semantically 

meaningful units and selectively recombines them to preserve critical information while maintaining 

structured inputs; (3) Relation-Entity Extraction, which identifies and structures entities and their 

relationships to enhance contextual relevance. Experimental comparisons between RQ-RAG and PC-

RAG (an optimized variant) show competitive performance: RQ-RAG achieves 68.3 (single-hop QA) 

and 49.7 (multi-hop QA), while PC-RAG scores 68.1 and 51.7, respectively. Future work will focus 

on refining query trajectory selection, improving context reranking, and addressing scalability 

challenges for real-world applications. In addition, enhancing intent understanding and adopting 

broader evaluation metrics will strengthen the framework's robustness and usability. 
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