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Abstract: Machine learning algorithms are increasingly adopted in the finance industry to 

predict credit default risk. While more models critically achieve strong predictive 

performance, the potential bias regarding some sensitive demographic attributes, such as 

education, perpetuates in the prediction-making process. Thus, in this study, a credit default 

prediction model built on Extreme Gradient Boosting (XGBoost) is not only implemented to 

achieve solid performance, but also investigated on mitigating education-related bias through 

several fairness interventions. Three approaches are explored: dataset-based by massaging, 

model-based by reweighing, and outcome-based by threshold adjustment, each deployed at 

different stages of the machine learning pipeline. The primary goal is to reduce the disparity 

in true positive rates (TPR) across groups while maintaining high balanced accuracy. 

Experimenting with parameters from the classifier and the hyperparameters from the dataset 

and outcomes, results show that all three interventions significantly improve fairness, with 

the best configuration reducing the TPR gap to below 0.01 and preserving predictive 

performance. This work demonstrates how fairness-aware interventions can be integrated into 

real-world financial decision-making systems. 

Keywords: Credit Default Prediction, Machine Learning, Fairness Interventions. 

1. Introduction 

Due to post Coronavirus Disease-2019 (COVID-19) economic recovery and the innovations of new 

digital payment methods such as mobile wallets and contactless transactions, credit card usage has 

grown rapidly in recent years. According to the Consumer Financial Protection Bureau, credit card 

spending strongly rebounded to $3.2 trillion in 2022, reflecting a 48% rise compared to 2020 [1]. 

Similarly, the Federal Reserve reports that credit payments made up 32% of all transactions in 2023, 

up from 18% in 2016 [2]. The growth is also reflected in rising credit balances and the number of 

open accounts. By mid-2023, credit card balances exceeded $1 trillion, with 70 million more open 

accounts compared to 2019 [3]. However, this expansion also raises concern regarding credit risk. 

While the delinquency rates dropped during the early pandemic, this decline was likely attributed to 

fiscal relief, loan forbearance, and reduced consumer spending. They began rising again in 2021 and 

have since surpassed pre-pandemic levels by early 2023 [4]. During the first nine months of 2024, 

U.S. card issuers wrote off over $46 billion in bad credit card debts, a 50% increase from 2023 [5]. 

Thus, a reliable assessment of credit risk remains crucial not only for financial institutions to make 

risk management decisions but also for the stability of the market economy as a whole. 
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Machine learning (ML), which allows computers to learn from historical data and solve tasks 

without explicit programming, has been widely used in credit card default predictions. An early 

comparative study by Yeh and Lien evaluates machine learning methods on Taiwanese credit card 

default prediction and proposes a novel “Sorting Smoothing Method” to calibrate predicted 

probabilities [6]. Yeh and Lien found that artificial neural networks were the most effective at 

estimating true default probability, while k-nearest neighbors and decision trees achieved the lowest 

error rates (approximately 18% on training data), indicating that nonlinear models were advantageous 

in this context [6]. The dataset used in this study, titled Default of Credit Card Clients, is publicly 

available through the University of California, Irvine (UCI) Machine Learning Repository [7]. 

Building on this dataset, Faraj, Mahmud, and Rashid compared traditional classifiers, neural networks, 

and ensemble models such as Extreme Gradient Boosting (XGBoost), and assessed models using 

Area Under the Receiver Operating Characteristic Curve (ROC) for class distinction and F1 score for 

precision-recall balance [8]. They found that ensemble methods consistently outperformed others in 

predicting credit card defaults, even under class imbalance [8]. 

While prior studies have heavily focused on predictive accuracy, algorithm comparison, or class 

imbalance handling, fairness concerns remain underexplored, particularly for the education level. 

Complex models, such as boosting and neural networks, often lack interpretability and may 

inadvertently amplify bias present in the training data [6,8,9]. Especially when group representation 

is imbalanced from disproportionate sampling, demographic sensitive attributes may implicitly or 

explicitly participate or even be weighted more during model training, further unintentionally 

perpetuate existing bias from the dataset or the classifier itself. Although education is frequently 

included as a relevant predictive feature, few studies assess its fairness impact. Existing fairness 

research on this dataset mainly focuses on gender and age [10, 11]. Failing to address such fairness 

issues can result in discriminatory outcomes against less privileged educational groups, potentially 

leading to reputational harm, regulatory penalties, and reduced consumer trust for financial 

institutions. Given the popularity of the Default of Credit Card Clients dataset, the strong performance 

of boosting algorithms like XGBoost, and the lack of bias mitigation studies involving education, this 

study explores the class imbalance in the dataset, defines and chooses accuracy and fairness metrics, 

and implements various fairness interventions to reduce disparity in across education groups. 

2. Data preprocessing and baseline modeling  

2.1. Exploratory analysis and feature preparation  

The Default of Credit Card Clients dataset contains 30,000 anonymized client records from a 

Taiwanese financial institution. Each record includes 23 feature variables comprising demographic 

and financial attributes, alongside a binary target label indicating whether the client defaulted on their 

payment in the subsequent month, as detailed in Table 1. Education level, designated as the sensitive 

attribute, is binarized to indicate whether a client has graduate-level education. The education groups 

are highly imbalanced, with 35.28% of clients classified as graduate-educated and 64.72% as non-

graduate. The dataset contains no missing values, so no imputation is required. 

Table 1: Summary of dataset features, including names, types, and descriptions from [7] 

Variable Name Type Description 

LIMIT_BAL Integer Amount of the given credit (NT dollar). 

SEX Categorical Gender (1 = male; 2 = female). 

EDUCATION Categorical 
Education level (1 = graduate school; 2 = university; 3 = high 

school; 4 = others). 

MARRIAGE Categorical Marital status (1 = married; 2 = single; 3 = others). 
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AGE Categorical Age of the client (in years). 

PAY_0, PAY_2, …, PAY_6 Integer 
History of past monthly payment status (-1 = pay duly; 1 = 

one month delay; ... 9 = nine or more months delay). 

BILL_AMT1, …, 

BILL_AMT6 
Integer Amount of bill statement for previous months (NT dollars). 

PAY_AMT1, …, PAY_AMT6 Integer Amount of previous payments (NT dollars). 

DEFAULT PAYMENT NEXT 

MONTH 
Binary Target label for default status (1 = default; 0 = no default). 

 

As shown in the boxplots from Figure 1, all financial features displayed right-skewed distributions. 

The correlation matrix in Figure 2 shows high correlation among bill statement amounts, suggesting 

redundancy due to similar underlying patterns. A moderate correlation among past payment statuses 

implies “Sequence Effects”, as someone makes consistent late payments over time. The given credit 

is mildly correlated with both bills and repayments. 

 
Figure 1: Boxplots of raw financial features show strong right skewness and the presence of outliers 

(picture credit: original) 

 
Figure 2: Pearson correlations heatmap of financial variables, suggesting redundancy among bill 

amounts and temporal dependency in payment status (picture credit: original) 

Table 1: (continued) 
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To implement fairness through unawareness, all sensitive attributes—sex, education, marriage, 

and age— are protected from decision-making. Only financial features were retained. Because of 

strong right-skewness across all financial features, a logarithmic transformation, defined as log(1+x), 

was applied on each financial input to reduce distributional skew and stabilize variance. To reduce 

dimensionality and redundancy, bill amounts are summed to the total bill amount and previous 

payments are summed to the total payment amount, due to high correlations. These aggregations were 

then used to engineer two ratio-based features as follows. 

 𝐶𝑟𝑒𝑑𝑖𝑡 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
∑ 𝐵𝑖𝑙𝑙 𝐴𝑚𝑜𝑢𝑛𝑡𝑠

𝐶𝑟𝑒𝑑𝑖𝑡 𝐿 𝐼𝑚 𝑖𝑡+𝜀
 (1) 

 𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝑟𝑎𝑡𝑖𝑜 =
∑ 𝑃𝑎𝑦𝑚𝑒𝑛𝑡 𝐴𝑚𝑜𝑢𝑛𝑡𝑠

∑ 𝐵𝑖𝑙𝑙 𝐴𝑚𝑜𝑢𝑛𝑡𝑠+𝜀
 (2) 

where 𝜀 = 1 × 10−6 is a mall constant added to avoid division by zero. The final feature vector 

includes 19 log-transformed financial features and the two derived ratios. 

2.2. Baseline model configuration  

The XGBoost model is adopted for its ability to capture complex nonlinear relationships. XGBoost 

also iteratively minimizes a loss function using second-order Taylor expansion and incorporates 

regularization to prevent overfitting. Unlike traditional models (e.g., logistic regression or random 

forests), XGBoost is suitable for this credit default dataset since it can handle class imbalance via the 

“scale_pos_weight” built-in parameter, which controls the balance of positive and negative weights. 

A grid search was used to fine-tune its hyperparameters, producing the optimal configuration of 38 

boosting rounds, shallow tree depth of 2 for overfitting reduction, “scale_pos_weight” of 3.507 

between defaulters and non-defaulters, and a random state of 0 for reproducibility. This configuration 

serves as the fixed baseline model for evaluating the effects of various fairness interventions. 

2.3. Fairness and performance metrics  

Both dataset-level prevalence indicators and per-group accuracy/fairness-based metrics are used to 

reveal the underlying patterns. Fairness metrics that evaluate disparities in model behavior include 

true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), false negative rate (FNR), 

equal opportunity (TPR parity), and more. Definitions and baseline values are summarized in Table 

2. 

Table 2: Definitions and baseline values for all evaluation metrics. EDUCATION=1 refers to clients 

with graduate education; EDUCATION=0 indicates otherwise 

Metrics  Type Description/ Formula Baseline Model 

Dataset Prevalence Dataset-level 
Proportion of defaults in the full 

dataset. 
0.2212 

Per-Group Prevalence Dataset-level 
Proportion of defaults within each 

sensitive group. 

EDUCATION=1: 0.1923 

EDUCATION=0: 0.2369 

Overall Accuracy Performance Overall accuracy on the test set. 0.7738 

Balanced Accuracy Performance 
Mean of TPR and TNR, adjusts for 

class imbalance [12]. 
0.7189 

Accuracy Parity 
Fairness (Group-

level) 

Difference in accuracy between 

groups. 

EDUCATION=1: 0.8003 

EDUCATION=0: 0.7594 

Demographic Parity 
Fairness (Group-

level) 

Positive prediction rates are equal 

across groups [13]. 

EDUCATION=1: 0.2377 

EDUCATION=0: 0.3025 

TPR Parity 
Fairness (Group-

level) 
TPRs are equal across groups [14]. 

EDUCATION=1: 0.5988 

EDUCATION=0: 0.6275 

TPR Gap 
Fairness (Group-

level) 

Absolute difference in TPR 

between groups. 
0.0287 
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FPR Parity 
Fairness (Group-

level) 
FPRs are equal across groups [14]. 

EDUCATION=1: 0.1516 

EDUCATION=0: 0.1980 

Generalized Equalized 

Odds 

Fairness (Error-

focused) 

Evaluates parity in both FPR and 

FNR [15]. 

EDUCATION=1: GFPR=0.1224, 

GFNR = 0.0773 

EDUCATION=0: GFPR=0.1498, 

GFNR=0.0907 

Treatment Equality 

Ratio 

Fairness (Error-

focused) 

Ratio of false positives to false 

negatives per group [16]. 

EDUCATION=1: 1.5837 

EDUCATION=0: 1.6516 

 

The overall dataset shows a 22.12% default rate, meaning that most clients do not default. Among 

groups, 19.23% of graduate-educated clients defaulted, versus 23.69% for those without, indicating 

higher risk among less educated clients. Due to prevalence imbalance, standard accuracy 

overestimates model quality by favoring the majority class, leading to more unnecessary “no default” 

predictions. Balanced Accuracy, on the other hand, prevents a surge of false positives by averaging 

TPR and TNR. Despite relatively high accuracy (77.38% overall and 71.89% balanced) for baseline, 

a 4% noticeable difference confirmed some disparity across education groups. The demographic 

parity legitimately perceives differences as justified in the class distribution, thus not relevant to the 

fairness goal. For Equal Opportunity, the less educated group had a slightly higher TPR than the 

graduate-educated group, with a TPR gap of 2.87%. This gap suggests the model under flags the 

graduate-educated group while over flags the less educated, raising concerns of risky approvals for 

unqualified graduate-educated clients and loan rejections for qualified less educated clients. Although 

the gaps in Generalized Equalized Odds and Treatment Equality Ratios are numerically small, their 

directional patterns still reflect a fairness concern. For instance, a high FPR for the less educated 

implies the baseline is more conservative with graduate-educated clients, and more aggressive with 

less educated clients. The ratio of false positives to false negatives is not the primary fairness concern 

in this study, as credit default prediction is an opportunity-sensitive domain to identify defaulters 

equitably. Thus, the balanced accuracy and the TPR gap will be used for later fairness intervention 

3. Method  

3.1. Criteria and environment  

To quantify whether interventions could reduce disparities between education groups while 

maintaining high predictive accuracy, two evaluation criteria are adopted: 

(1) reducing the TPR gap between education groups to below 0.01, and 

(2) maintaining minimal drop in balanced accuracy relative to the baseline. 

Each intervention technique is fine-tuned over combinations of hyperparameters using grid search, 

and all qualified configurations achieving the fairness criterion are ranked by balanced accuracy in 

descending order. For reproducibility, all experiments were conducted using Python version 3.8.19 

and XGBoost 2.1.4. The dataset was shuffled with a fixed random seed (0) and split into a 50:50 

training and testing split, given its large size. 

3.2. Intervention reproduction and fine-tuning  

Fairness intervention techniques can be implemented at different stages of the machine learning 

pipeline, and they are commonly categorized as: (1) pre-processing, (2) in-processing, and (3) post-

processing. This study reproduces one representative method for each category and fine-tunes its 

hyperparameters. Each intervention is implemented independently from the same baseline model and 

evaluated under the same experimental settings described earlier. 

Table 2: (continued) 
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3.2.1. Dataset-based intervention (massaging) 

Dataset-based intervention from the pre-processing stage aims to mitigate bias before model training. 

It is typically achieved through feature engineering, such as one-hot encoding, or directly 

manipulating the dataset, such as flipping labels for some records. In this study, the data-based 

intervention is achieved using the massaging approach proposed by Kamiran & Calders [17]. The 

method is rank-based as it begins by training a temporary model (ranker) to estimate the probability 

of default. Based on these group-wise confidence scores, instances near the decision boundary are 

considered for relabeling without largely harming the accuracy. Specifically, top M candidates from 

the disadvantaged negatives are promoted, while top M candidates from the advantaged positives are 

demoted, ensuring the same class distribution. A closed-form discrimination formula is defined as 

𝑀 =  𝑑𝑖𝑠𝑐(𝐷) ⋅  |𝐷𝑏|  ⋅  |𝐷𝑤| / |𝐷|. The discrimination score of the dataset, disc(D), defined as the 

difference in positive label prevalence between the unprivileged group, 𝐷𝑏 (less educated), and the 

privileged group, 𝐷𝑤 (educated) [17].  

Beyond the default formula, this study also experiments with scaled values of M using a multiplier, 

𝑀𝑚𝑢𝑙𝑡𝑖. All configurations achieving a TPR gap less than 0.01 are evaluated and ranked based on 

balanced accuracy. 

3.2.2. Model-based intervention (reweighing) 

Model-based interventions from the in-processing stage can be achieved through adjusting the 

parameters of the model, such as sample weights for the XGBoost classifier. It aims to adjust 

discrimination during the training stage, without altering feature values or class labels. In this study, 

the reweighing technique from Kamiran and Calders is first reproduced and then fine-tuned on other 

parameters. Unlike massaging, reweighing retains the original dataset but modifies the influence of 

each instance during model training through group- and class-conditional weights. Each training 

instance was assigned a weight based on its group (educated or less educated) and label (default or 

non-default). Weights were computed such that the contribution of each group-label combination was 

inversely proportional to its frequency, ensuring underrepresented combinations receive more 

influence, thus balancing the contribution of each group-label pair to the learning process. For each 

of the four combinations of sensitive attribute 𝑧 𝜖 {0, 1}  and class label 𝑦 𝜖 {0, 1}, an instance is given 

a weight calculated as 𝑊𝑒𝑖𝑔ℎ𝑡(𝑧, 𝑦)  =  
𝑃(𝑧) ⋅ 𝑃(𝑦)

𝑃(𝑧,𝑦)
, where 𝑃(𝑧, 𝑦) is the observed joint probability of 

group z and label y, and 𝑃(𝑧), 𝑃(𝑦) are their marginal probabilities. After Reweighing, the model is 

further fine-tuned on parameters such as tree depth and imbalance scale.  

3.2.3. Outcome-based intervention (thresholding) 

Outcome-based interventions from the post-processing stage can be achieved through adjusting 

prediction outcomes after training, without modifying the model or input features. This study 

implements thresholding, a group-specific decision thresholding that is applied to the probability 

outputs of the model from Kamiran and Calders. Thresholding tries to equalize the TPRs across 

different education groups by adjusting the classification thresholds after model prediction. Given 

predicted probabilities �̂�(𝑦 = 1 | 𝑥) from a trained classifier, two thresholds, 𝑡0 and 𝑡1 are defined 

for the less educated and educated groups. These two thresholds are iteratively adjusted to minimize 

the TPR gap, with the goal to satisfy the Equal Opportunity criterion |𝑇𝑃𝑅𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑(𝑡0)  −
 𝑇𝑃𝑅𝑙𝑒𝑠𝑠 𝑒𝑑𝑢𝑐𝑎𝑡𝑒𝑑(𝑡1)|  <  𝜀, where ε = 0.01 is a small tolerance for fairness. The model will assign a 

positive label if the predicted probability is greater than the threshold.  
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4. Experiment  

4.1. Dataset-based intervention (massaging)  

As the massaging technique only modified the dataset, the model construction setup remains 

unchanged from the baseline XGBoost configuration (38 boosting rounds, tree depth of 2, class 

imbalance weight of 3.507). Reproducing the closed-form formula of M, 132 training labels were 

flipped to mitigate group-level discrimination. To investigate how different massaging intensities 

could impact the number of flips, additional experiments are conducted with custom multipliers of M 

from 1.8 to 3.2 with a step size of 0.1, which allows for fine-tuned fairness adjustments. Model 

performance was evaluated using the same criteria: balanced accuracy and TPR gap. 

4.2. Model-based intervention (reweighing)  

The reweighing technique was implemented by computing the training instance weights using the 

class-group joint distribution in the dataset. These weights were then passed to the XGBoost classifier 

during the training stage via the sample weight parameter. To optimize performance and fairness, the 

following model hyperparameters were tuned using grid search: Number of estimators: 30 to 50, in 

steps of 1; Max depth = {2, 3, 4, 5}; Class imbalance weight: 3.82 to 3.98 in steps of 0.02. The 

configuration that achieved a TPR gap below 0.01 while maintaining a high balanced accuracy was 

selected, considering a fairness-performance trade-off. 

4.3. Post-processing intervention (thresholding)  

To evaluate the impact of post-processing, the original classifier trained in Part 1 was used and applied 

group-specific thresholds on the predicted probabilities. The thresholds were tuned by performing a 

small grid search over possible values for each group to minimize the TPR gap on the training data 

while holding the model fixed. After tuning, an optimal threshold of 0.5 for the less educated group 

and a threshold of 0.48445 for the educated group were found. 

5. Results and discussion  

5.1. Massaging intervention  

The default massaging intervention (M = 132 flipped labels) results in a balanced accuracy of 0.7156 

and a TPR gap of 0.0230 on the test dataset. After experimenting with different 𝑀𝑚𝑢𝑙𝑡𝑖, the model 

achieves a TPR Gap of 0.0061 with a slight reduction in balanced accuracy (0.7176). 

While Kamiran & Calders propose a closed-form solution for determining the number of label 

modifications needed to eliminate dataset-level discrimination, it is observed that the closed-form 

formula does not always yield the optimal M. Since the formula is derived under a theoretical 

assumption where flipping exactly M promotion and demotion pairs could only result in the training 

dataset having zero discrimination as measured by prevalence rates, it does not guarantee fairness on 

the testing dataset with a TPR gap of exactly zero nor a balanced performance on unseen data. The 

default M was too small, as proved from the observations, to actually reduce model bias during 

training, and a more aggressive M leads to better fairness without overfitting or hurting performance. 

5.2. Reweighing intervention  

After applying the reweighing technique, it is observed that the model significantly reduced the TPR 

disparity across education groups. Specifically, the TPRs for the two groups became nearly equal 

with 0.6654 versus 0.6621, and a TPR gap was achieved with just 0.0033. This indicates a high level 
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of fairness in terms of Equal Opportunity, which ensures defaulters are identified equally across 

groups. 

5.3. Thresholding intervention  

After tuning the thresholds on the training dataset to minimize the TPR gap, the performance on the 

testing dataset was evaluated, which achieved a balanced accuracy of 0.7186 and a small TPR gap of 

0.0050. 

6. Conclusion  

This study explored three fairness intervention strategies across different stages to address disparities 

in a credit default prediction among education groups. Focusing on the Equal Opportunity, the 

XGBoost model was trained and fine-tuned to search for the best configuration of hyperparameters 

that minimize the TPR gap without sacrificing too much on the balanced accuracy compared to the 

baseline model. Eventually, all three fairness interventions, including massaging, reweighing, and 

thresholding, are proven to work with a tiny gap of TPR less than 0.01 and similar balanced accuracy. 

Thus, the fairness–accuracy tradeoff was consistently analyzed across all methods. Notably, all 

interventions did not hugely harm the accuracy much, which indicates fairness and utility can coexist 

when carefully balanced. This work serves as a practical reproduction and comparative analysis of 

fairness methods, as well as explores potential novel improvements that were not explicitly addressed 

in the original research papers. Future directions include exploring other fairness notions, applying 

interventions to multiple sensitive attributes at the same time, and extending to more complex or real-

time decision settings. 
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