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Abstract: In the realm of structural engineering, ensuring the safety and longevity of 

structures has become increasingly paramount, making structural health monitoring (SHM) a 

critical task. This study introduces an innovative damage identification strategy tailored for 

bridge structures, leveraging the Bayesian update method to enhance the precision and 

efficiency of damage detection. By constructing a comprehensive bridge structure model with 

the aid of advanced structural mechanics solvers, the research applies Bayesian inference to 

analyze the probability distribution of potential damages. This approach not only facilitates 

the identification of damage locations and extents with high accuracy but also optimizes the 

posterior distribution, significantly reducing computational costs. The findings demonstrate 

that this optimized method markedly improves upon traditional damage detection techniques, 

offering a more reliable solution for SHM. Moreover, the reduced computational burden 

allows for more frequent monitoring and quicker response times to emerging structural issues, 

thereby enhancing overall structural safety and management practices. This advancement 

paves the way for more effective maintenance strategies and contributes to the development 

of smarter, safer infrastructure. 
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1. Introduction 

In the Cincin Lama bridge collapse in Indonesia in 2021, brittle fracture of localized nodes occurred 

because multiple vehicles passed over the bridge at the same time [1]. In 2023, an old railroad Warren 

truss bridge in Europe suffered a web bar fracture in operation, which, due to insufficient maintenance, 

ultimately triggered a continuous multiple bar failure, resulting in a cascading structural collapse [2]. 

Since the 1940s, the topic of structural health monitoring and damage identification has attracted 

wide attention in the engineering field's interest, and the development of a variety of different methods 

[3]. Doebling et al. [4][5]and Sohn et al. [6] are two pairs of structure-based models. Bayesian 

Inference, because of its ability to incorporate a priori, express uncertainty, and update models from 

existing observations, has shown strong potential in damage identification, and health detection of 

structures [7]. 

For the structural damage identification and exploration aspects of Warren trusses, Goi and Kim 

[8] have used Bayesian updating to localize the existing truss damage by hypothesis testing method. 
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In the study of Shi [9], Bayesian updating still showed high stability and accuracy in truss structures 

constructed from composite materials. 

Bayesian updating methods have been widely used in bridge health monitoring, but little research 

has been done to optimize the research methods. We are faced with weak damage signals, high 

uncertainty of connection points, and even situations where the damage estimates are far from the 

actual values. In order to mitigate these problems, this paper will focus on the topic of posterior 

distribution optimization by proposing two key strategies. 

Constructing the generation mechanism for multi-displacement point detection: detecting the 

corresponding information of multiple key node displacements, constructing a more constrained 

generation mechanism, and adding the corresponding conditions of the union in the acceptance 

criterion, thus improving the acceptance rate of high-quality samples, and the accuracy of the 

posterior distribution problem. 

2. Methodology 

2.1. Theoretical overview 

Bayesian Inference is essentially the process of converting the problem of structural identification 

into the probability of a parameter and implementing an update. The core of the idea is: Through the 

prior distribution, we express the uncertainty of the important parameters of the bridge assumptions, 

and then through the likelihood function to reflect the support for the parameter evidence; and 

ultimately through the Bayesian update, the fusion of the prior and the updated data to determine the 

approximate damage of the structure. 

The formula for Bayesian updating can be expressed as: 

 p(θ | D)  =  
[𝑝(𝐷 | 𝜃) · 𝑝(𝜃)]

p(D)
 (1) 

2.2. Priori distribution modeling and finite element analysis 

The a priori distribution mainly reflects the subjective knowledge of important node parameters 

before structural identification. In the structural study of Warren trusses, the a priori data are probably 

derived from historical loading model data, design drawings, finite element analyses, or the 

knowledge of expert engineers. 

Kwag [10] has used a hierarchical Bayesian updating model to simulate multiple layers of prior 

for structural parameters, resulting in greater robustness in identifying damage. Fortuin [11] points 

out that sparse priors (e.g., Laplace or Beta priors) in high-dimensional spaces enhance model 

generalization and avoid overfitting. 

In order to improve the computational efficiency, this paper uses an equivalent simplified finite 

element model as a fast solver during multiple Bayesian updating, which reduces the model 

complexity while guaranteeing the consistency of the key responses, thus improving the accuracy and 

efficiency. The structural mechanics solver serves not only as a fundamental platform for damage 

simulation in this study but also as a crucial physical support in the posterior distribution generation 

process. 

2.3. Likelihood function and data consistency modeling 

The likelihood function aims to link parameters and observations, and the construction of the 

likelihood function is based on modeling the difference between the observed error and the structural 

prediction. Likelihood function construction has existed in categorized reviews and introduced 

nonlinear models, and weighted likelihoods to improve stability. [12].   
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 L(X) =
1

√2π∙σ
е−0.5(

Σ (dᵢ − d̂ᵢ(θ))²

σ²
)
 (2) 

2.4. Posterior distribution construction and representation 

The posterior distribution, on the other hand, represents, corrected for the observed data, the cognitive 

state of the parameters of the important nodes and the final result of the Bayesian update. 

Meanwhile, considering that the a posteriori distribution is prone to convergence difficulties when 

the dimensionality is high or the quality of the observation data is insufficient, this paper proposes to 

integrate the information of multi-displacement measurement points to construct a more 

representative Proposal Distribution.  

Jerez et al. [13] proposed a framework for a posteriori estimation of structural dynamic model 

parameters, which significantly improves the computational efficiency in multi-parameter 

space.Yang et al. [14] combined gradient-assisted strategy to improve the convergence efficiency, 

and verified the validity of the high-dimensional a posteriori estimation in the case of a real bridge. 

2.5. Rejection sampling algorithm (rejection sampling) 

Rejection sampling is used to sample from complex distributions, and the core idea is to generate 

samples from the proposed distribution q(θ) and judge whether the samples are retained or not through 

the accept-reject mechanism. Fusing rejection sampling with structural reliability methods can 

efficiently screen posterior samples [15]. Combining rejection sampling with variable weight 

importance sampling can realize complex a posteriori structure identification. [16]. 

 𝛼(𝜃) =
p(𝜃|d)

[M⋅×⋅q(𝜃)]
=

[p(d|𝜃)×p(𝜃)]

[M⋅×⋅q(𝜃)]
 (3) 

In the above formula, p(θ|d) represents the target posterior distribution, p(θ) represents the prior 

distribution, p(d|θ) represents the likelihood function, q(θ) represents the proposal distribution, and 

M is a constant satisfying M  multiplied by q(θ) greater than or equal to p(θ|d). 

Under the traditional rejection sampling framework, the use of full-structure response to construct 

the likelihood function often leads to low acceptance rate, especially when the error control is strict, 

the qualified samples are very few, resulting in a significant increase in the computational cost. In 

this paper, we introduce the "multi-point conditional acceptance" criterion into the design of the 

proposed mechanism, which significantly improves the adaptability of the samples in the a posteriori 

space with the help of the joint error metric function composed of multiple measurement points. In 

addition, the ratio coefficient in the rejection function can be dynamically adjusted according to the 

local observation sensitivity of the structure to improve the sampling efficiency. 

3. Algorithms 

3.1. Model establishment 

In this paper, the two-dimensional truss model is constructed with Baotong bridge in Kunshan as the 

main body. The steel truss girder of the main bridge of Bao Tong Bridge has a length of 90 meters 

and a width of 23 meters, and the main truss adopts the structure of Warren truss with high-strength 

bolts and welded form, the truss is constructed with typical H-beam steel, weighing approximately 

1500 tons, and the site is shown in the picture Fig. 1. 
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Figure 1: Baotong bridge 

The constructed example shrinkage model is shown in Fig. 2, and its overall geometric parameters 

are as follows: the upper chord bar and the lower chord bar are both horizontal bars with a length of 

7.5m and a total length of 45m, and the web bar consists of a vertical bar and a diagonal bar, with the 

vertical bar having a length of 7.5m and the diagonal bar having a length of 10.607m. The left side 

of the junction is the chain bar support, and the right side is the strut bar support. The initial value of 

tensile strength EA1 of upper and lower chords is 19000kN, and the initial tensile strength EA2 of web 

is 9500kN. 

After structural health monitoring, it was found that all the bars showed some degree of damage 

EA1 reduced to 18000kN and EA1 reduced to 9000kN, which was used as the damage reference value 

to judge the accuracy of the post-test results. 

It is estimated that the EA1 damage value conforms to the normal distribution 

N(16000kN,16002kN) and the EA2 damage value conforms to the uniform distribution 

U(7000kN,9000kN), and this is used as the prior distribution of the experiment, the error conforms 

to the normal distribution with the standard deviation of 2mm, judge the accuracy of the results of the 

posterior distribution of which its obtained by Bayesian updating of. 

 

Figure 2: Example scaling model 

In order to obtain the specific damage results of the bars by estimating the distribution of damage 

values and to seek the optimal test scheme, three test schemes with two loading modes were preset. 

The first test scheme is that a vertical downward concentrated force of size 1kN is applied to each 

node of the upper chord bar, while a vertical downward concentrated force of size 3kN is applied to 

the nodes of the lower chord bar, as shown in Fig. 3, and then is updated by using the displacement 

information of node 4. The second test scheme is to update the model using the displacement 

information of the two nodes, node 4 and node 11, also utilizing the loading scheme of Fig. 3. The 

third test scheme is to locally model the model intercepting the left end of the model 15m and a 

concentrated force of 40kN horizontally to the right and 20kN vertically upwards is applied to node 

9, while a concentrated force of 50kN vertically downwards is applied to node 8 as shown in Fig. 4, 
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and then updating using the displacement information of both node 8 and node 9 is carried out using 

the information of the displacements of both node 8 and node 9. 

 

Figure 3: First loading mode 

 

Figure 4: Second loading mode 

3.2. Analysis of results 

3.2.1. Comparison of loading test and update results 

Using the Bayesian updating method, the model constructed by the structural mechanics solver 

software, obtains the measured values of vertical displacements of node 4 and node 11 as 102.426 

mm and 88.546 mm respectively. The expressions for the displacements of the two points are obtained 

by using the obtained internal forces based on the principle of virtual work: 

Node 4 vertical displacement expression: 

 disp4 =
1035

EA1
+

404.338

EA2
 (4) 

Node 11 vertical displacement expression: 

 disp11 =
900

EA1
+

346.911

EA2
 (5) 

Assuming that the error in the measured values conforms to a normal distribution with a standard 

deviation of 2 mm, the likelihood function of the two nodes is established on this basis: 

Node 4 likelihood function expression: 

 
1

√2π∙0.002
е−0.5(

disp4−0.1024

0.02
)2

 (6) 

Node 11 likelihood function expression: 
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1

√2π∙0.002
е−0.5(

disp11−0.0886

0.02
)2

 (7) 

Multiple iterations of rejection sampling are run using the displacement information of node 4 to 

obtain a sufficient number of candidate samples that meet the prerequisites, which is required to be 

greater than 1000 accepted samples. The structural damage results are obtained as in Fig. 5, Fig. 6. 
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Figure 5: Updated results of the first test 

scenario EA1 
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Figure 6: Updated results of the first test 

scenario EA 

Comparing with the prior distribution set in the previous section, the data update that utilizes only 

one node's displacement information is effective. In order to seek for a better solution, so a second 

experimental scheme is proposed, Multiple repetitive runs of rejection sampling are performed using 

the displacement information of two nodes, node 4 and node 11. The structural damage results in Fig. 

7,Fig 8 are obtained. 
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Figure 7: Results of the second pilot program 

EA1 update 
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Figure 8: Results of the second pilot program 

EA2 update 

Comparing the EA1 values and EA2 values of the two test schemes are shown in Fig. 9 and Fig. 

10, it can be found that there is a significant improvement in the updating results. 
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Figure 9: Results of the first and the second test 

scenario EA1 
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Figure 10: Results of the first and the second test 

scenario EA2 

In order to further investigate whether the local modeling as well as the reduction of error can be 

effective for the a posteriori test, so the third test scheme is proposed. Similarly, the measured values 

of vertical displacements of 8 and node 9 were obtained as 77.675 mm and 82.557 mm, respectively, 

and the expressions for the displacements of the two points were obtained by utilizing the obtained 

internal forces based on the principle of virtual work: 

Vertical displacement expression for node 8: 

 disp8 =
337.5

EA1
+

530.33

EA2
 (8) 

Horizontal displacement expression for node 9: 

 disp9 =
637.5

EA1
+

424.264

EA2
 (9) 

The errors in the measured values conform to a normal distribution with a standard deviation of 2 

mm, on the basis of which the likelihood function of the two nodes is established: 

Node 8 likelihood function expression: 

 
1

√2π∙0.001
е−0.5(

disp8−0.0777

0.02
)2

 (10) 

Node 9 likelihood function expression: 

 
1

√2π∙0.001
е−0.5(

disp8−0.0825

0.02
)2

 (11) 

Multiple repetitive runs of rejection sampling are performed using the displacement information 

of node 8 node 9 nodes. The structural damage results are obtained as in Fig. 11, Fig. 12. 
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Figure 11: EA1 update results for the third test 

scenario 
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Figure 12: EA2 update results for the third test 

scenario 

Comparing the EA1 and EA2 values of the second scheme with the third scheme as shown in Fig. 

13, Fig. 14, it can be found that the third scheme is slightly less effective in updating the EA1 values 

compared to the third scheme, but the updating of the EA2 values is greatly improved. 
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Figure 13: Comparison results of the second and 

third test scenarios EA1 
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Figure 14: Comparison results of the second and 

third test scenarios EA2 

3.2.2. Reliability analysis based on updating effects 

A comparison of the reliability of the EA1 update results for the three groups of test protocols is shown 

in Table 1. The results show that Group 2 has the highest overall reliability, the best accuracy and the 

smallest systematic deviation, and medium precision. Group 1 had the best precision, but the accuracy 

and systematic deviation were slightly inferior to Group 2. 

A comparison of the reliability of the EA2 update results for the three groups of test protocols is 

shown in Table 2 .The results show that Group 3 has the highest reliability, with the best performance 

in accuracy, precision and systematic deviation. Group 2 has the second highest reliability, slightly 

better precision than Group 1, but worse accuracy. Group 1 had the lowest reliability and the worst 

precision and systematic deviation. 
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Table 1: Comparison of reliability factors for EA1 

Group 

Number 

Reference 

Value(kN) 

Mode 

(kN) 

Relative 

Error 

Mean 

Value 

Standard 

Deviation 

Variable 

Coefficient 

(1) 18,000 17872.73 127.27 17957.42 1048.998 5.84% 

(2) 18,000 17843.64 156.36 17778.01 975.739 5.49% 

(3) 18,000 17314.54 685.45 17488.19 1147.401 6.56% 

Table 2: Comparison of reliability factors for EA2 

Group 

Number 

Reference 

Value(kN) 

Mode 

(kN) 

Relative 

Error 

Mean 

Value 

Standard 

Deviation 

Variable 

Coefficient 

(1) 9000 8969.70 30.3 8408.973 444.98 5.29% 

(2) 9000 8947.27 52.73 8452.969 416.81 4.93% 

(3) 9000 8978.70 21.3 8787.779 163.71 1.86% 

 

The above comparison results show that, when resources allow, multi-point displacement data 

updating is prioritized to improve the stability of the posterior distribution. If it is necessary to rely 

on single-point data, the measurement points with the strongest response to the target parameters 

should be selected through sensitivity analysis and supplemented with error correction modeling. The 

strategy of hybrid modeling, combining local modeling and global data calibration, to find the most 

suitable loading method and local modeling, and then updating the damage values of some rods by 

local modeling, can be implemented for efficient monitoring of specific damage areas and reduce the 

computational cost and data collection burden. 

4. Conclusions 

In order to seek the optimal measurement method of the damage value of truss bridges in actual 

engineering, this paper adopts a combination of theoretical analysis and numerical simulation, firstly 

assuming that the damage situation starts from the structural response of different loading situations, 

and then utilizing the rejection sampling method to carry out sampling calculations, so as to determine 

the a posteriori probability distribution of the structural parameters and the optimal estimation value. 

The results of the study are as follows: 

(1) Comparing the first and the second experimental scenarios, it is found that: under the same 

loading method, although the selection of suitable single-node displacement data for updating can 

also obtain a more accurate damage estimation overall, its instability will be higher than the a 

posteriori results obtained from the multi-node displacement data, and the multi-node displacement 

data can show a better balance in the global parameter identification. 

(2) Comparing the second and third experimental scenarios, it is found that the local modeling 

strategy needs to find the most appropriate loading method to avoid negative impacts on the updating 

of individual parameters. In practice, local modeling can be used for critical damage areas, while 

other parameters can be calibrated with global data to balance accuracy and reliability. 

(3) The experimental process shows that the rejection sampling method can get good sampling 

results, but the efficiency of data sampling is low, so it is necessary to seek a more efficient sampling 

method to improve the efficiency of the rejection sampling method in subsequent research. The 

experiment only explores the validity of truss bridge structure in different experimental situations 

under actual engineering, and the study is still explorable for other civil engineering structures. 
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