

Machine learning models for house price prediction

Lingjie Fang

Stuyvesant High School, 6617 Ovington Ct Brooklyn, NY 11204, United States

lfang30@stuy.edu

Abstract. Housing prices have changed over the years, and there has been an increasing need

to predict prices of future homes. This paper gives an overview of various machine learning

models that can predict housing prices. There are numerous possible methods of pre-processing

the data, so this paper explores ways to handle missing values and categorical data. In this

study, the models of regression tree, random forest, XGBoost, gradient boosting, and

LightGBM are described and used to predict housing prices. Machine learning models also

have hyperparameters that can be adjusted, which can affect predictive accuracy. The methods

are evaluated on several benchmark datasets. Based on the results, our approach is effective for

the task of house price prediction.

Keywords: Machine Learning, House Price Prediction.

1. Introduction

Real estate developers and property investors benefit from knowing the trends of housing prices [1].

Furthermore, house price prediction can help potential buyers and sellers of homes manage their

finances. The different features of a particular house, such as lot size and number of bedrooms, affect

the price of the house. With house prices changing frequently in the real estate market, there has been

an increasing need to accurately predict the prices of residential homes.

Machine learning models are important for house price prediction because they can efficiently

consider the various features of a house and give an accurate estimate for its price using historical data.

Different machine learning models provide different estimates for housing prices, and within each

machine learning model, any hyperparameters can affect the estimate as well. Therefore, experiments

were conducted to analyse different machine learning models with different hyperparameters for the

task of house price prediction [2].

2. Methodology

In this section, we introduce several algorithms used in this paper.

2.1. Regression Tree

One of the most basic machine learning models is the regression tree [3], or a decision tree where the

variables are continuous. The predictor space is defined as the set of values the features 𝐴1, 𝐴2, … , 𝐴𝑚

can take on. The predictor space is divided up into 𝐺 distinct and non-overlapping regions labeled

𝑅1, 𝑅2, … , 𝑅𝐺. The tree model makes the same prediction for every tuple x=(𝑥1, 𝑥2, … , 𝑥𝑚) in the same

region 𝑅𝑔, namely, the mean value for that region.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230505

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

409

A top-down, greedy algorithm called recursive binary splitting is used to construct the regions

𝑅1, 𝑅2, … , 𝑅𝐺 . Starting from the top of the tree, at each node, the tree splits into two branches,

corresponding to the current region 𝑆𝑘 (subset of predictor space) splitting into two smaller regions.

More specifically, a predictor 𝐴𝑗 and cutoff 𝑠 are chosen, and the two regions are {x ∈ 𝑆𝑘|𝑥𝑗 < s} and

{x ∈ 𝑆𝑘|𝑥𝑗 ≥ s}. At the node corresponding to the region 𝑆𝑘, the optimal choices for the predictor 𝐴𝑗 ∈
{𝐴1, 𝐴2, … , 𝐴𝑚} and cutoff 𝑠 ∈ ℝ are such that the following quantity is minimized:

∑ (𝑦𝑖 − �̂�1)2

𝑖: x𝑖∈{𝐱∈𝑆𝑘|𝑥𝑗<s}

+ ∑ (𝑦𝑖 − �̂�2)2

𝑖: x𝑖∈{𝐱∈𝑆𝑘|𝑥𝑗≥s}.

(1)

where x𝑖 = values of features of 𝑖th data point in respective set, 𝑦𝑖 = value of target variable associated

with x𝑖 , �̂�1 = mean value of 𝑦𝑖 for {𝐱 ∈ 𝑆𝑘|𝑥𝑗 < s}, �̂�2 = mean value of 𝑦𝑖 for {𝐱 ∈ 𝑆𝑘|𝑥𝑗 ≥ s}. The

tree splitting process continues until a stopping criterion is reached.

2.2. Random Forest

Another supervised machine learning method is random forest [4]. This type of model combines

multiple base models to produce a new model, so it is called an ensemble method. In a random forest

model, 𝐵 random (potentially overlapping) subsets of the training data are selected. For each subset, a

regression tree is built using that data. The main difference between such a regression tree and the

regression tree model in Section 2.1 is that in generating a particular regression tree in a random forest,

for every possible tree split, only some of the possible predictor variables are allowed to be candidates

for the predictor variable used in that split. Usually, there are 𝑑 ≈ √𝑚 candidates, meaning that most

of the 𝑚 predictor variables are not considered for the split. Note that each split may have different

candidates.

After all 𝐵 regression trees are built, the final random forest model is generated by taking the

average of the regression tree models:

𝑓𝑎𝑣𝑔(x) =
1

𝐵
∑ 𝑓𝑏(x)

𝐵

𝑏=1

(2)

where 𝑓𝑏(x) = target function for 𝑏th subset of training data.

A random forest model is usually more accurate than a single regression tree. A disadvantage of the

single regression tree model is that it has high variance, meaning that if a different training set were

used, the resulting model could be significantly different. Since averaging a set of independent

observations 𝑍1, 𝑍2, … , 𝑍𝑛 reduces variance, a random forest model would have a lower variance error

than a single regression tree.

 Furthermore, allowing only 𝑑 ≈ √𝑚 of the 𝑚 predictor variables to be candidates at each tree split,

instead of all 𝑚 features, results in the tree model predictions being less similar, since the strongest

predictor variables will no longer always be at the top split. Taking the average of uncorrelated

predictions reduces variance more than taking the average of correlated predictions, which adds on to

the effectiveness of the random forest model.

2.3. Gradient Boosting

Like random forest, gradient boosting is a supervised learning ensemble method [5]. Unlike in random

forest, where the regression trees are all created independently of each other, in gradient boosting each

new model attempts to correct the errors made by the previous model by minimizing a differentiable

loss function. The iterative process of minimizing a loss function has the effect of improving the

overall model over time, i.e. reducing the overall error. A common loss function is squared-error:

𝐿(𝑦, 𝐹) = (𝑦 − 𝐹)2 (3)

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230505

410

The following is an algorithm for gradient boosting that runs for 𝑀 iterations on a training set

{(x
1,

𝑦1), … , (x
𝑛,

𝑦𝑛)}. Steepest descent with negative gradient is used to minimize the differentiable

loss function.

1) Initialize a constant function 𝐹0(𝐱).

2) For 𝑚 = 1 to 𝑀:

a. Calculate − [
𝜕𝐿(𝑦𝑖,𝐹(x𝒊))

𝜕𝐹(x𝒊)
] for 𝑖 = 1 to 𝑛.

b. Fit a regression tree model ℎ𝑚(x) to the negative gradients.

c. Update the new model to be

𝐹𝑚(x) = 𝐹𝑚−1(x) + 𝜆𝑚ℎ𝑚(x)

 for some constant 𝜆𝑚.

3) The resulting model is 𝐹𝑀(x).

2.4. XGBoost

XGBoost is a popular boosting algorithm that many data scientists have used to win machine learning

competitions [6]. XGBoost is highly optimized, as it can handle sparse data easily and use weighted

quantiles to determine where to split. XGBoost is also scalable, as it uses out-of-core computation as

well as parallel and distributed computing to handle large data with relatively few cluster resources.

For tree learning, or more specifically, finding the optimal split, there is an algorithm called exact

greedy algorithm, which involves sorting the data based on feature values. Although this algorithm is

accurate, there is not enough memory to include all the data in practice. Therefore, XGBoost uses an

approximate algorithm. This algorithm finds the optimal split by aggregating various statistics. The

algorithm has two versions: global proposal and local proposal. In global proposal, the candidate splits

are proposed when the tree is constructed in the beginning, and the proposals are kept constant for all

levels. Meanwhile, in local proposal, the proposals may be changed after every split. Although the

local version has more proposal steps, it is more effective for deeper trees.

2.5. LightGBM

LightGBM is a boosting algorithm with histogram-based algorithms [7]. One significant benefit of

LightGBM is that it trains models faster and consumes less memory than other machine learning

models.

The algorithms used in LightGBM are optimized for different tasks. The feature parallel algorithm

in LightGBM helps parallelize the task of finding the best split in the decision tree. The data parallel

algorithm helps parallelize the whole decision learning process. Since high-dimensional data tends to

be sparse, LightGBM bundles exclusive features into much fewer dense features, a technique called

Exclusive Feature Bundling (EFB). LightGBM also uses gradient-based one-side sampling, which

reduces the amount of data used while also maintaining decision tree accuracy. Overall, LightGBM is

an efficient machine learning technique.

3. Experiments

3.1. Datasets

The dataset used in this study describes residential homes sold in Ames, Iowa in the United States

from 2006 to 2010 [8]. The dataset has a size of 1460 rows and 81 columns. In each row of the dataset,

79 variables are used to describe aspects of a particular residential home, and the SalePrice variable is

used to store the price of that home.

3.2. Experimental Settings

Machine learning models often have hyperparameters, which are parameters that can be set to control

the learning process. In the experiments, various hyperparameters for the single regression tree,

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230505

411

random forest, and XGBoost models were analysed to see which values made each model perform the

best. For each of these experiments, identical models were created, with the only difference between

them being different values of a single hyperparameter. Then, the error (Section 3.3) for each model

was recorded.

One hyperparameter for the single regression tree is the maximum number of leaf nodes. A tree

with too few leaf nodes can underfit the data, while a tree with too many leaf nodes can overfit the

data. To find the optimal value for the maximum number of leaf nodes for a single regression tree, the

values of the hypermeter tested were 20, 30, 40, … 100, i.e. a constant difference of 10 from 20 to 100.

The number of weak learners is a hyperparameter for the random forest model. The weak learners

are usually regression trees, which are used in the averaging step of the algorithm. Having more weak

learners tends to make the model more accurate in making predictions [9]. In the experiments, the

values of the hyperparameter tested were 50, 100, 150, … 500, i.e. a constant difference of 50 from 50

to 500.

The XGBoost model has the number of weak learners as a hyperparameter. Having more weak

learners and a small learning rate tends to make the model’s predictions more accurate. In the

experiments, the values of the hyperparameter tested were 100, 150, 200, … 500, i.e. a constant

difference of 50 from 100 to 500 [10]. The computational machine used for running the experiments

had a 7th Gen Intel® Core™ i7-7500 CPU with a base frequency of 2.70 GHz, as well as 8.00 GB of

installed RAM.

3.3. Metrics

The metric used in the experiments is the mean absolute error (MAE):

MAE =
∑ |𝑦𝑖 − 𝑦𝑖

∗|𝑛
𝑖=1

𝑛
(4)

where 𝑛 = total number of data points, 𝑦𝑖 = actual value in 𝑖th data point, 𝑦𝑖
∗ = predicted value in 𝑖th

data point. A lower mean absolute error signifies better predictive accuracy.

3.4. Pre-processing

Missing values can be handled by dropping columns with missing values or imputing them. In

imputation, each missing value (NaN) in a column with numerical data is replaced with a number,

such the mean of the non-missing values in the column.

Figure 1. Example of imputing missing values using the mean.

In the experiments, two random forest models were set up with the two models being identical, except

one model had the columns with missing values dropped, while the other model used imputing for the

missing values. Then, the mean absolute errors of the two random forest models were recorded and

compared to determine the effectiveness of each approach.

Meanwhile, categorical data can be handled by dropping columns with categorical data or using

one-hot encoding. The latter is a process in which new binary columns are created, with each column

recording whether each training example in the original data had a certain value for a particular feature.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230505

412

Figure 2. Example of one-hot encoding.

In the experiments, two identical random forest models were set up, with the only difference being

how each handled categorical data. The mean absolute errors of the two random forest models were

then recorded and compared to determine the effectiveness of each approach.

3.5. Results and Analysis

In the experiments, missing values were best handled by imputation. The model that used imputation

had an MAE of 17809, while the model that dropped columns with missing values had an MAE of

18852. Meanwhile, the optimal way to handle columns with categorical data was one-hot encoding.

The model that used a one-hot encoder had an MAE of 17628, while the model that dropped columns

with categorical data had an MAE of 17977.

For the single regression tree, having a maximum of 70 leaf nodes was optimal, with the result

being an MAE of 24632. For random forest, having 450 regression trees was optimal, with the result

being an MAE of 17609. For XGBoost, having 200 trees was optimal, with the result being an MAE

of 16370.

Table 1. Handling missing values.

Method MAE

Drop columns with missing values 18852

Imputation 17809

Table 2. Handling categorical data.

Method MAE

Drop columns with categorical data 17977

One-hot Encoding 17628

Figure 3. Optimal max leaf nodes for regression (single decision) tree.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230505

413

Figure 4. Optimal number of trees (weak learners) for random forest model.

Figure 5. Optimal number of trees (weak learners) for XGBoost model.

The machine learning model with the lowest MAE in the dataset was XGBoost. The machine learning

models with slightly higher MAEs were gradient boosting and LightGBM. The random forest model

had a higher MAE, and the single regression tree model had the highest MAE.

Table 3. Mean absolute errors for different machine learning models.

Method Velocity (ms–1)

Single Decision Tree 24632

Random Forest 17609

LightGBM 16898

Gradient Boosting 16893

XGBoost 16370

4. Conclusion

As seen in the experiments for house price prediction, the optimal way to handle missing values is to

impute them, and the optimal way to handle categorical columns is to use one-hot encoding. Other

methods, such as removing columns with missing values or categorical columns, may produce less

accurate models. Furthermore, many machine learning models, including XGBoost and random forest,

have modifiable parameters that can be optimized to produce accurate models. The most accurate

machine learning models are XGBoost, gradient boosting, and LightGBM, as seen in the house price

prediction experiments. Possible future work includes analyzing more hyperparameters (e.g. the

learning rate for XGBoost) and applying machine learning models to other real-world scenarios.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230505

414

References

[1] Cerda, P., Varoquaux, G., & Kégl, B. (2018). Similarity encoding for learning with dirty

categorical variables. Machine Learning, 107(8), 1477–1494. doi:10.1007/s10994-018-5724-

2.

[2] Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

785–794. San Francisco, California, USA. doi:10.1145/2939672.2939785

[3] Cock, D. D. (2011). Ames, Iowa: Alternative to the Boston Housing Data as an End of Semester

Regression Project. Journal of Statistics Education, 19(3), null.

doi:10.1080/10691898.2011.11889627

[4] Cort J. Willmott, & Kenji Matsuura. (2005). Advantages of the mean absolute error (MAE) over

the root mean square error (RMSE) in assessing average model performance. Climate Research,

30(1), 79–82. doi:10.3354/cr030079

[5] Donders, A. R. T., van der Heijden, G. J. M. G., Stijnen, T., & Moons, K. G. M. (2006). Review:

A gentle introduction to imputation of missing values. Journal of Clinical Epidemiology, 59(10),

1087–1091. doi:10.1016/j.jclinepi.2006.01.014

[6] Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The

Annals of Statistics, 29(5), 1189–1232. doi:10.1214/aos/1013203451

[7] Hastie, T., Friedman, J., & Tisbshirani, R. (2017). The Elements of Statistical Learning: Data

Mining, Inference, and Prediction. Springer.

[8] James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical

Learning: with Applications in R. Springer.

[9] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., … Liu, T.-Y. (2017). LightGBM: A

Highly Efficient Gradient Boosting Decision Tree. Proceedings of the 31st International

Conference on Neural Information Processing Systems, 3149–3157. Long Beach, California,

USA. Red Hook, NY, USA: Curran Associates Inc.

[10] Zulkifley, N., Rahman, S., Nor Hasbiah, U., & Ibrahim, I. (12 2020). House Price Prediction

using a Machine Learning Model: A Survey of Literature. International Journal of Modern

Education and Computer Science, 12, 46–54. doi:10.5815/ijmecs.2020.06.04.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/4/20230505

415

