

Monte-Carlo tree search with Epsilon-Greedy for game of

amazons

Chuan Tian

Faculty of Engineering, Architecture & Information Technology, University of

Queensland, St. Lucia, Brisbane, 4072, Australia

c.tian1@uqconnect.edu.au

Abstract. The Game of the Amazons is an abstract strategy board game. It has a high

computational complexity similar to the game of Go. Due to its NP-complete nature and large

branching factor of game tree, finding the optimal move given a specific game state is infeasible

and it is not trivial to design a computer algorithm that is competitive to an expert in the game

of amazons. One way to tackle this problem is to leverage the Monte-Carlo Tree Search by using

random simulations. In this article, a computationally cheap heuristic function is proposed and

use together with Monte-Carlo Tree Search algorithm with Epsilon-Greedy policy aiming to

design a competitive AI for the Game of the Amazon. The effectiveness of the ϵ-greedy based

Monte-Carlo algorithm is compared to the widely used MCTS with Upper Confidence Bound

and other classical tree search method such as breadth-first search, depth-first search, minmax

search and alpha-beta pruning.

Keywords: Game of the Amazons, Monte-Carlo Method, Machine Learning, ϵ-greedy.

1. Introduction

The Game of the Amazons requires two players. It is a popular abstract strategy board game. The game

is played by moving pieces and placing arrows to block the opponent, and the winner would be the last

player that could be able to move a piece. The rules of the Amazon game are quite simple. The board

has 10-by-10 squares. Each player starts with 4 queens, placed on the board, as shown in the left part of

Figure 1. The player’s action is made up of two parts: first, moving of one of his queens in straight line

in any directions similar to the queen in chess. Then, after moving a queen, the player could initiate

another orthogonal or diagonal move, just like the movement of a queen, and shoot an arrow from its

landing square to another one. A square is then blocked until the end of the game if it is shoot by the

aforementioned arrow. Any subsequent movements or arrow shots cannot pass or land on it. The two

players move their queens alternatively. If no queen could be moved by a player, the he or she loses this

game.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230956

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

775

Figure 1. Starting position of queens in Amazons (left) and the board after one move (right). Figure

from: http://www.solitairelaboratory.com/amazons.html.

The Game of Amazons is a relatively complex game: Buro shows that solving the game of the amazon

is an NP-complete task [1]. NP-completeness of Amazon means solving the best action for a given

amazon puzzle requires more than polynomial time under the assumption that 𝑃 ≠ 𝑁𝑃. Another way

to look at the complexity of amazon is by looking at the branching factor of amazons’ game tree: the

average possible game states per turn are around 2000 and there will be more than 4 million possible

states just after two turns. Therefore, it is not practical to search the game tree by brute force.

UCT tackles this large branching factor problem and is commonly used in the AI of game of Amazon.

However, other kinds of AI, by using carefully designed heuristic function can also perform well in

game. For example, Region based heuristic function together with alpha-beta search has been proposed

Hongxia et al [2].

Monte Carlo tree search (MCTS) belong to the family of heuristic search algorithms, which is widely

applied for trees searching in board games like chess. MCTS has recently proven to be competitive when

combining with neural networks [3]. AlphaGo combines neural network with MCTS. It successfully

defeats the world Go human champion Lee Sedol in 2015 [4].

The Upper Confidence bounds applied to Trees (UCT) algorithm is a special MCTS, which was

introduced in 2006 [5]. In UCT, upper confidence bound (UCB1) guide the node selection, transferring

the process of selection into the problem of multi-armed bandit [6]. In UCT method, the important moves

are more likely to be searched than the moves that tend to behave badly. Given infinite time and memory,

UCT theoretically converges to Minimax [7].

MCTS is most implemented using UCT. However, other tree policy can also be used. In this article,

MCTS is implemented together with ϵ-Greedy. One of the most important goals of UCT is to make

trade-offs between exploration and exploitation and explore more on more valuable nodes. This same

goal can also be achieved using ϵ-Greedy [8].

The overview of UCT will be introduced in Section 2, and the implementation of ϵ-greedy will be

demonstrated in Section 3. The MCTS with UCB approach and classical method like minmax and alpha-

beta pruning are compared in Section 4. At last, Section 5 summarizes the conclusions.

2. Monte-Carlo tree search method

MCTS focuses on analysing the most valuable method to expand the search tree on search space using

random sampling. Rollout could be regarded as the key for applying the Monte Carlo tree search during

the game. In each rollout, a virtual player proceeds the game until the end of the game based on randomly

selected moves. The final results will be used to guide the future selection, where, for each nodes within

the game tree, a promising node selection that tend to induce a successful result will be selected with

higher probability.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230956

776

2.1. Phases of Monte-Carlo tree search

There are four steps in each iteration of Monte Carlo tree search: Selection, Expansion, Simulation and

Backpropagation [9].

2.1.1. Selection. In MCTS algorithm with UCB, the algorithm determines the procedures from current

game state (denoted as root) to an unvisited or terminal state (denoted as leaf). The path is determined

iteratively based on upper confidence boundary (UCB) algorithm [10]. Given a root state called s0. The

determination of the subsequent states {s0, s1, ..., sl} of the UCB is denoted as

𝑈𝐶𝐵1(𝑆𝑖) = 𝑉�̅� + 𝐶√
𝑙𝑛(𝑡)

𝑛𝑖

(1)

Where 𝑉�̅� is the mean value of node i, C is a constant, t is the total number of simulation, and 𝑛𝑖 stands

for number of visits of node i.

2.1.2. Expansion. Once an unvisited state sl is achieved, it will be expanded. During the subsequent

iterative selection all the child nodes will be regarded as leaf nodes.

2.1.3. Simulation. For each node in the simulation pool, a simulation is conducted by selecting moves

until the terminal state is reached.

2.1.4. Backpropagation. Once values in a recently added node is determined, the remaining tree also

needs to be renewed. Therefore, backpropagation is performed, which propagates backwards from the

newly added node to the root node. In backpropagation, the number of simulations saved in each node

is increased. In addition, if the simulation of the new node ends in a win as a terminal state, the number

of wins for its parent nodes is also increased.

Algorithm 1 MCTS

Input: state 𝑠0

𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑠0

repeat

if 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is a leaf node then

if 𝑛𝑖 𝑒𝑞𝑢𝑎𝑙𝑠 𝑡𝑜 0 then

rollout(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
end if

Add available actions to 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 as leaf node

𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← first child node of 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡

rollout(𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
end if

𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑖
(𝑈𝐶𝐵1(𝑆𝑖))

 until 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is a terminal state

Algorithm 2 Rollout

Input: state 𝑠𝑖

repeat

if 𝑠𝑖 is terminal state then

return Q(𝑠𝑖)

end if

𝐴𝑖 ← random(available Actions(𝑠𝑖))

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230956

777

𝑠𝑖 ← simulate(𝐴𝑖, 𝑠𝑖)

until 𝑠𝑖 is a terminal state

3. Implementation of Monte-Carlo tree search

Monte Carlo Tree Search is implemented with ϵ-greedy policy, in this paper. The algorithm follows the

structure of MCTS: which is Selection, Expansion, Simulation, Backpropagation. Unlike UCT (Upper

Confidence Bound applied to trees), the selection strategy for select the action state and the selection in

the simulation phase is different. The UCT method always select highest value node, this value is

calculated by UCB. However, since there is a large number of potential moves in the following games,

the search range need to be reduced before using MCTS. This is achieved by using heuristic function.

For improving the performance of the heuristic function. A computationally cheap greedy heuristic is

proposed. The heuristic function is:

∑ p(qi)

4

i=1

− ∑ p(oi)

4

i=1

(2)

This function calculates the number of legal moves of a queen, qi stands for player’s queen, and oi

stands for opponent’s queen. For a given game state. All possible child states of a player from a given

state is calculated using the heuristic function 1. For each queen of a player, queen’s possible state is

sorted by the value of greedy heuristic function. The highest 12 states of each queen (increase as game

goes on) is then selected, result in 48 states of possible chooses. Those 48 states are then added to a

simulation pool. Which state is chosen as the final action state is based on their number of winning in

the simulation phase in MCTS algorithm.

3.1. Epsilon-Greedy method

ϵ-greed is a commonly used strategy when weighing between exploitation and exploration. A small

positive number ϵ(< 1) representing the probability is used to select unknown action in a random manner,

leaving 1 - ϵ probability of selecting the action with highest value, which is defined as a greedy action.

Assume that st ∈ S is the current state and A is action sets that could be selected. After conducting an

action at ∈ A the agent will meet the next states st+1 and the corresponding gain will be rt. In the decision

process, there is ϵ probability of choosing any non-greedy action, each action is then chosen with

probability pj which will be defined later in equation (4); that is, each action has the pj probability of

being chosen non greedily. There is also 1 − ϵ probability that a greedy action could be selected, so the

1 − ϵ + ϵ · p represents the likelihood that a greedy action could be selected. Among all the sets of actions

A, there is always one action that is considered optimal by the agent at a certain moment. Let A∗ be arg

maxaQ(S,a) and π (a| s) = Pr{at = a|st = s}, then

𝜋(𝑎 ∣ 𝑠) = {
1 − 𝜖 + 𝜖 ⋅ 𝑝, if a = 𝐴∗

𝜖 ⋅ 𝑝, otherwise
(3)

3.2. MCTS with ϵ-Greedy

3.2.1. Selection. The node with the largest Q value will be first selected by the greedy policy with

probability of ϵ. If the node with highest Q value is not selected, then the selection will be based on the

q value sorted in the node. The probability in nodes follow a uniform distribution at the beginning, with

each node having identical q-vaule Q(𝑠𝑖) = 1, Which is then updated through backpropagation. The

following probability is used to select node in non-greedy policy

p(sj) =  Q(sj) (∑ Q(si)(1 − δij)

n

i=1

)

−1

(4)

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230956

778

where δ stands for the Kronecker delta function. However, as simulation goes on. probability of

choosing a node is updated by Backpropagation according to the result of terminal state.

3.2.2. Expansion. Once an unvisited state si is achieved, it will be expanded. The value of heuristic

function 2 will first be calculated for all child states of si and then they will be sorted. Only the largest

48 states will be added as child states of si.

3.2.3. Simulation. For each node in the simulation pool, a simulation is conducted by choosing moves

based on its probability by formula 4 until a terminal state is met.

3.2.4. Backpropagation. In one iteration of simulation, once a terminal state is met, the parent nodes in

the tree need to be updated. Backpropagation process is then begun, which propagates backwards from

the new node to the root node. If win is the terminal state of a new node, the probability of choosing that

node will increase in further simulation. The new action value is updated by using the following formula:

Q′(st, at) ← Q(st, at) + αγd (5)

where Q is the new action value, is a number in range (0,1] and d is the “reverse depth” of a node

counting from 0 to the root node (terminal state’s depth is 0). γ is a decaying factor that controls how

further the game result propagate. The final implemented algorithm is summarized in Algorithm 3.

Algorithm 3 MCTS2

Input: state 𝑠𝑖

𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑠0

repeat

if 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is a leaf node then

Sort the value of formula 2 for all possible actions

Add the highest 48 actions to 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 as its leaf nodes

𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← first child node of 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡

end if

Generate a random number r between 0 and 1

if ϵ > r then

 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑆𝑖
(p(s𝑖))

else

 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← Sample 1 state by probability defined in formula 4

end if

Backpropagate Q by formula 5

until 𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is a terminal state

4. Comparison to classical search algorithm

The MCTS algorithm that have defined (as shown in Algorithm 3) is tested against several agencies,

namely MCTS with UCB, alpha-beta pruning, minmax, depth first search and breadth first search.

Because of the lack of the Amazons game protocol, the validation of the effectiveness of the

improvements are conducted through the self-play games of the standard program. The MCTS with

UCT is implemented as shown in algorithm 1. Each agency is put against each other for 100 rounds.

Each agency is given identical calculation time of 30 seconds per turn. After the terminal state of game

is reached, the result of win/lose is than recorded. The results are demonstrated in Table 1. The

experiments are conducted on a i7-1280P CPU with 8G RAM.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230956

779

Table 1. Results comparison.

 Win(MCTS) Lose

MinMax 92 8

DFS 100 0

BFS 100 0

MCTS(UCT) 62 38

α-β pruning 82 18

Noted that to reduce the branching factor, for each of 4 algorithms only top 48 nodes ranked by formula

2 is pre-selected as possible action.

5. Conclusion

In this paper Monte Carlo Tree search with greedy is implemented. In this work the same heuristic

function is used. The MCTS algorithm overall demonstrates its advantage in tree search with large

branching. From the play out of games, MCTS obtained a higher win rate when competing with classical

tree search method. The method implemented in this paper also has a slightly better performance than

commonly used MCTS+UCB method, with 62%-win rate. Heuristic function is also an important factor

of the algorithms’ performance. In game of amazons, it is often hard to find a good move in early game,

special crafted Heuristic functions or may be neutral network can be used together with MCTS to

produce a stronger AI, and this method has been proven successful in the game of go.

References

[1] Buro, M. (2000). Simple Amazons endgames and their connection to Hamilton circuits in cubic

subgrid graphs. In International Conference on Computers and Games, 250-261.

[2] Hongxia, X., Yuan, X., & Guoyu, Z. (2013). A region-divided search algorithms for game

Amazons. In 2013 25th Chinese Control and Decision Conference (CCDC), 933-938.

[3] Silver, D., Schrittwieser, J., Simonyan, K., et al. (2017). Mastering the game of go without human

knowledge. nature, 550(7676), 354-359.

[4] Silver, D., Huang, A., Maddison, C. J., Guez, A., et al. (2016). Mastering the game of Go with

deep neural networks and tree search. nature, 529(7587), 484-489.

[5] Kocsis, L., & Szepesvári, C. (2006). Discounted UCB. In 2nd PASCAL Challenges Workshop 2,

51-134.

[6] Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). Finite-time analysis of the multiarmed bandit

problem. Machine learning, 47(2), 235-256.

[7] Kocsis, L., & Szepesvári, C. (2006). Bandit based monte-carlo planning. In European conference

on machine learning, 282-293.

[8] Thrun, S., & Littman, M. L. (2000). Reinforcement learning: an introduction. AI Magazine, 21(1),

103-103.

[9] Chaslot, G. M. J., Winands, M. H., Herik, H. J. V. D., Uiterwijk, J. W., & Bouzy, B. (2008).

Progressive strategies for Monte-Carlo tree search. New Mathematics and Natural

Computation, 4(03), 343-357.

[10] Rosin, C. D. (2011). Multi-armed bandits with episode context. Annals of Mathematics and

Artificial Intelligence, 61(3), 203-230.

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230956

780

