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Abstract: In automated factories, dynamic obstacle avoidance and trajectory planning of 

robotic manipulators are critical to achieving safe and efficient operations. However, 

traditional obstacle avoidance methods, such as the artificial potential field, element 

decomposition, viewable, Voronoi diagram, and probabilistic road map, face many 

challenges in dealing with complex dynamic environments, such as target unreachable and 

local minimum problems. A new dynamic obstacle avoidance and trajectory planning 

framework based on the Soft Actor-Critic (SAC) algorithm is proposed in this paper to 

address these problems. The framework combines the fast-scaling random tree (RRT) 

algorithm for global path planning and the SAC algorithm to optimize the local path to adapt 

to the changes in the dynamic environment. Specifically, the simulation uses Python to 

construct a URDF (Unified Robot Description Format) model of an open-source robot arm. 

It applies the SAC algorithm to the model's dynamic obstacle avoidance trajectory planning. 

The simulation results show that the proposed framework combining RRT and SAC 

algorithms achieved a high success rate in reaching the target point. This method can 

effectively find the right trajectory in a complex dynamic environment.   

Keywords: Trajectory planning, Dynamic obstacle avoidance, Reinforcement learning, SAC. 

1. Introduction 

Robotic manipulators are widely used in industry, health care, agriculture, and other industries. 

Handling and storing the payload is one of the significant operations dispelled using a robotic 

manipulator [1]. However, their operation environment is often complex, with dynamic obstacles 

such as moving personnel and vehicles constantly present. A significant challenge in robotics is 

ensuring that robot manipulators can avoid these dynamic obstacles in real-time while maintaining 

high-efficiency operation. In manual control, the operator performs all tasks except low-level position 

control. This requirement posits a significant cognitive demand on the operator [2].  

Traditional obstacle-avoidance methods for robots mainly include methods based on Artificial 

Potential Fields, Cell Decomposition, Visibility graphs, Voronoi Diagrams, and Probabilistic Road 

Maps [3]. Although these methods have achieved specific results in static or semi-static environments, 

they face difficulties in dynamic and complex scenarios. For example, artificial potential field 
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methods may encounter problems such as target inaccessibility and local minima, often requiring 

many computational resources for real-time dynamic obstacle detection and path planning [4]. 

On the contrary, the SAC algorithm possesses numerous advantages. One of the most significant 

advantages is that the SAC algorithm, employing a stochastic strategy, demonstrates enhanced 

robustness and superior adaptability, rendering it particularly apt for addressing the challenges 

inherent in path-planning tasks [5]. 

This paper focuses on the dynamic obstacle-avoidance problem of robot manipulators in 

automated factories.  

The simulation uses the URDF model of an open-source robotic arm to build a robot model in 

Python. Subsequently, the SAC algorithm in Python is applied to conduct dynamic obstacle avoidance 

trajectory planning for the constructed robot model. Through simulation simulations, the 

effectiveness and superiority of the proposed method in complex dynamic environments were verified, 

providing a new solution for the safe and efficient operation of the robot's operating arm in automated 

factories. In summary, the main contributions of this work are: 

• A new dynamic obstacle avoidance and trajectory planning framework has been proposed: This 

framework combines the RRT algorithm for global path planning and the SAC algorithm for local 

path optimization to adapt to changes in a complex dynamic environment. This method addresses 

issues encountered by traditional obstacle avoidance methods, such as target inaccessibility and 

local minima. 

• A Python-based URDF model of an open-source robotic arm has been constructed: This model 

has been applied to dynamic obstacle avoidance trajectory planning based on the SAC algorithm, 

thereby validating the effectiveness and superiority of the proposed method in complex and 

dynamic environments. 

• An improved learning mechanism has been introduced: By adjusting the temperature parameter α 

in the SAC algorithm, the level of exploratory randomness is controlled, allowing the robotic arm 

to be more flexible in dealing with moving obstacles and achieving efficient trajectory planning. 

The rest of the paper is organized as follows: Section II reviews the related work, focusing on the 

advantages of the RRT algorithm for high-dimensional path planning and the SAC algorithm's 

capability in managing continuous action spaces. Section III details our proposed framework for 

dynamic obstacle avoidance and trajectory planning, covering the design aspects of state space, action 

space, and reward function composition. Section IV describes the simulation setup using the PyBullet 

physics engine to demonstrate trajectory optimization and obstacle avoidance, along with an analysis 

of the training outcomes. Finally, Section V summarizes the findings, highlighting the method's 

effectiveness and practical potential while acknowledging its limitations and suggesting future 

research directions. 

2. Related work 

This paper proposes a trajectory planning framework that integrates the RRT and SAC algorithms for 

efficient and stable dynamic motion generation [6]. 

RRT achieves an 𝑂(𝑛𝑙𝑜𝑔𝑛) computational complexity in high-dimensional global path planning, 

outperforming deterministic algorithms with exponential complexity [7]. This efficiency is attributed 

to its probabilistic sampling mechanism, which ensures asymptotic completeness and minimizes the 

exploration space [8]. The algorithm can perform a random sampling of points in the configuration 

space. For each sampling point, collision detection is performed to verify whether the path from the 

nearest node in the tree to this sampling point is collision-free. If there is no collision along the path, 

add this sampling point to the tree, thereby gradually constructing the path from the starting point to 

the destination [9]. The algorithm flowchart is presented in Fig.1 
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Figure 1: RRT algorithm flowchart 

Furthermore, SAC is integrated into the framework for local trajectory refinement to address 

dynamic path adaptation [10]. SAC is a maximum-entropy deep reinforcement learning algorithm 

well-suited for continuous action spaces [11]. It balances exploration and exploitation through a 

stochastic policy network and twin Q - networks. Entropy regularization and target network updates 

enable SAC to effectively handle high-dimensional state-action spaces [12]. In robotic manipulator 

trajectory planning, SAC dynamically adjusts the temperature parameter α to control exploration 

randomness, thereby enhancing real-time adaptability, which allows the robotic arm to navigate 

complex environments with moving obstacles and achieve efficient trajectory planning [13]. 

The RL mainly includes three sections: policy, function, and model. The policy decides what the 

intelligent will do next, while the function predicts the future reward and the model determines the 

following status [14].  

The actor network is responsible for choosing the action and managing exploration for the SAC 

algorithm. At the same time, the critic network interacts with the working environment and predicts 

the value functions of each step [15]. An entropy regulation is included in the SAC algorithm, which 

encourages the agent's exploration [16]. This maximum entropy ensures that the policy network can 

get the maximum reward and, as a result, optimize the trajectory. It has now been widely used in 

robotic arms. The flowchart of the SAC algorithm is shown in Fig. 2. 
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Figure 2: SAC algorithm flowchart 

The object function can be expressed as in  formula (1): 

 max
𝜋

𝐸𝜏~𝜋 [∑ 𝛾𝑡𝑅𝑇
𝑡=0

(𝑠𝑡, 𝑎𝑡)] + 𝐸𝑎~𝜋[𝐻(𝜋(𝑎|𝑠))] (1) 

where  max
𝜋

𝐸𝜏~𝜋[∑ 𝛾𝑡𝑇
𝑡=0 (𝑠𝑡, 𝑎𝑡)]   is the expected return in the RL. The agent maximizes the 

discounted sum of reward, which is the discount factor that determines how much future rewards 

influence decision-making. The entropy of policy 𝜋(𝑎|𝑠)  encourages stochasticity in action selection. 

The entropy function 𝐻(𝜋) ensures that the policy does not become too deterministic, improving 

exploration and stability during training. 

3.  Problem formulation 

3.1. State space & action space 

The state space of the robotic arm comprises three parts: the joint angles, time information, and 

obstacle positions. A 7-degree-of-freedom (7-DOF) robot from the PyBullet library was utilized, and 

two sphere obstacles were defined to move in straight lines at identical speeds but in opposite 

directions. The dimensions of the three parts are presented respectively in Table 1. 

Table 1: State space 

State Dimensionality 

Joint angles 7 

Time 1 

Obstacles 6 

 

The seven joint angles are limited to a specific range. Time is normalized as shown in formula (2): 

 
𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑡𝑚𝑎𝑥
 (2) 

where 𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡  is the current time, and  𝑡𝑚𝑎𝑥  stands for the maximum time of one episode. Each 

obstacle has three position dimensions, and the total dimensionality of the obstacles is 6.   

The action space includes all possible movements of the agent, and the action ranges from (-1,1) 

for all seven angles. It has seven dimensions in total. Furthermore, actions were clipped to limit the 

working space, and a normal distribution was added to the action to simulate random noise in real 

environments, as presented in the formula (3):  

 �̂� = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑎, 1), −1)  × 0.5 + 𝑁(0,0.1) (3) 
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The term 𝑚𝑎𝑥(𝑚𝑖𝑛(𝑎, 1), −1) ensures that the original action 𝑎 is limited to the range (-1,1), 

where actions were clipped to 50% of their original values, and a normal distribution with a mean of 

0 and a standard deviation of 0.1 was added to simulate noise in real-world industrial environments. 

3.2. Reward function 

This section designs the reward function in multiple ways. Overall, the reward function can be 

expressed as the sum of multiple kinds of reward functions: 

 𝑅𝑡𝑜𝑡𝑎𝑙 =  ∑ 𝑅𝑖 (4) 

where 𝑅𝑖  represents the following reward functions. 

For the orientation function, the reward function is shown in an exponential form in (5): 

 𝑅𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 = {
200 × 𝑒𝑥𝑝(−𝐷𝑃𝑇 × 10)              𝐷𝑃𝑇 > 0.2

200 × 𝑒𝑥𝑝(−𝐷𝑃𝑇 × 10) +
25

𝐷𝑃𝑇
   𝐷𝑃𝑇 ≤ 0.2

 (5) 

where 𝐷𝑃𝑇 is the distance between the target and the end effector. After the distance is not higher than 

0.2, we added another term  25/𝐷𝑃𝑇  to guide the agent to the target.  

To guide the robotic arms to the target direction, a direction vector was employed, which is shown 

as (6):  

 𝑅𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  2 × 𝑐𝑙𝑖𝑝((𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒𝑒) ∙ 𝑛𝑙𝑖𝑛𝑘 , −2, 2) (6) 

where  𝑝𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑝𝑒𝑒 stand for target position and end effector position respectively. And 𝑛𝑙𝑖𝑛𝑘 is the 

unit vector of the direction of the target. The clip function limits the range of  (𝑝𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑝𝑒𝑒) ∙

𝑛𝑙𝑖𝑛𝑘  to (-2,2).  

Another reward function is designed to keep a safety distance away from the obstacles. 𝑑1 , 𝑑2 

stand for the distance between the target and the 2 obstacles. The function is shown as (7): 

 𝑅𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 =(−
1

1+|𝑑1|
−  

1

1+|𝑑2|
) / 50 (7) 

To ensure smoothness and natural joint configurations, a smoothness reward function and a posture 

reward function were utilized, which can be defined as equations (8) and (9):  

 𝑅𝑠𝑚𝑜𝑜𝑡ℎ𝑛𝑒𝑠𝑠 = −|�̂�| (8) 

 𝑅𝑝𝑜𝑠𝑡𝑢𝑟𝑒 = −
‖𝑞𝑝𝑜𝑠‖ 

100
 (9) 

where |�̂�| is the action of the robotic arm after clapping. 

𝑞𝑝𝑜𝑠 stands for the array of 7 joint positions of the robotic arm.   

Finally, an exploration reward function is added to encourage the exploration of the robotic arm. 

It is shown in the equation (10): 

 𝑅 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑁(0 , 0.1) (10) 

N(0,0.1) is a Gaussian random variable with mean 0 and standard deviation 0.1. 

C. Collision detection 

One of the most important tasks in this simulation is to imply obstacle avoidance in trajectory 

planning. Collision is determined by whether the distance between the obstacle and the nearest point 

of the robotic arm is below the threshold. The collision detection is shown in formula (11): 
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 |𝑑|𝑚𝑖𝑛 <  𝑟 + 𝛿 (11) 

where |𝑑|𝑚𝑖𝑛 is the minimum distance between the robotic arms and obstacles and r is the radius of 

the two sphere obstacles. 𝛿 is the threshold, where it is set to 0.01 in this research.  

4. Simulation 

PyBullet is a powerful physics engine well-suited for robotic arm simulation. It offers various models 

to support diverse tasks across various scenarios [17]. 

The simulation uses PyBullet to optimize trajectory and obstacle avoidance via reinforcement 

learning. A simulation environment for a 7-DOF KUKA robotic manipulator was established. The 

training flowchart is presented in Fig.3. 

 

Figure 3: Training flowchart of the simulation 

First, the RRT algorithm generates a global path. Post global path generation, collision checking 

is executed. If a collision occurs, a negative reward is assigned. If no collision is detected, a check for 

goal attainment follows. A goal-reached reward is given when the goal is reached; if protection time 

elapses without goal attainment, the corresponding condition is processed. These reward calculations 

feed into the SAC reinforcement learning algorithm. 

Specifically, after RRT generates the global path, the SAC algorithm optimizes the local path. 

SAC uses a stochastic policy network and twin Q-networks as a maximum-entropy deep 

reinforcement learning algorithm for continuous action spaces. Integrating entropy regularization and 

target network mechanisms balances exploration and exploitation. In robotic manipulator trajectory 

planning, the SAC algorithm dynamically adjusts the temperature parameter α to control policy 

exploration randomness, which enables the manipulator to autonomously optimize local paths 

according to the global path generated by RRT. The robotic manipulator, dynamic obstacles, and 

target points are instantiated during simulation environment initialization. The state space comprises 
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joint angles, normalized time values, and obstacle positions, while the action space consists of joint 

angular velocity commands. 

Throughout the training, with obstacles moving periodically along prescribed straight paths, the 

robotic manipulator learns strategies to reach targets while avoiding obstacles. Integrating RRT-based 

global path planning and SAC-based local path optimization enables the manipulator to handle 

dynamic obstacles and complex environments effectively, improving the target-reaching success rate. 

After training, learning effectiveness is analyzed and visualized using reward curves, success-rate 

pie charts, action-range histograms, and robotic manipulator motion trajectories. This analysis 

validates the effectiveness of obstacle-avoidance strategies and target achievability [18]. 

5. Simulation results 

In this section, simulations were conducted to evaluate the performance of the SAC algorithm 

integrated with RRT for trajectory planning. Comparative evaluations were also performed against 

other algorithms, such as DDPG (Deep Deterministic Policy Gradient). A slightly lower learning rate 

of  5*10-5 is set instead of the default value of 3*10-4 to encourage the agent's exploration and ensure 

more stable training. The batch size is enlarged to 512, and the buffer size is increased to 1*107. 

Instead of using the 'auto' entropy coefficient, a fixed entropy rate of 0.1 is adopted to balance 

practical exploration and achieve a smoother convergence curve. The model is trained 100,000 times. 

If the distance between the end effector and the target is not higher than 0.1 after training, we define 

it as a successful trajectory.  

The simulation compared the reward values and success rates in four scenarios: SAC with RRT, 

SAC without RRT, DDPG with RRT, and DDPG without RRT. The four reward curves, shown in 

Fig. 4, represent the trend of the reward values in these four conditions. 

 

Figure 4: Reward progress of different algorithms 

According to Fig.4., the reward value shows an increasing trend when we combine SAC with RRT. 

In contrast, the reward values of the other three situations remain stable after 100,000 timesteps, 

which supports the effectiveness of the combination of SAC and RRT under this reward function.  

Fig.5 illustrates the trend of success rates in four situations. It can be concluded that when applying 

SAC and RRT together, the success rate rises dramatically to about 35% after 100,000 timesteps, 

while the other three scenarios only see a slight increase in success rates, from 0% to 5% after the 

robotic arm is trained 100,000 times. The success rate becomes much higher when adding RRT to the 

original SAC algorithm, indicating that this method performs better than all the other 3 conditions 

under this simulation environment. 
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Figure 5: Success rates of different algorithms 

Fig.6 and Fig.7 compare the trajectory of SAC and DDPG after training 100,000 timesteps, both 

with RRT. The SAC algorithm features a smoother and shorter path than DDPG. Both of the two 

algorithms can handle trajectory planning successfully. The SAC algorithm generates a smoother and 

more direct path, whereas the DDPG trajectory is more convoluted and time-consuming.   

 

Figure 6: Trajectory of SAC algorithm after training 

 

Figure 7: Trajectory of DDPG algorithm after training 

All results and comparisons demonstrate that combining SAC with RRT leads to the most effective 

trajectory planning among the four conditions.  

6. Conclusions 

In conclusion, the effectiveness of the proposed method for dynamic obstacle avoidance and 

trajectory planning using the SAC algorithm was verified via simulations. The results show that our 

method can successfully navigate obstacles while efficiently reaching the target position. Compared 

with traditional algorithms such as artificial potential fields and geometric methods, our approach 
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demonstrates significant advantages regarding adaptability to dynamic environments and 

computational efficiency. 

One notable observation is the smoothness of the trajectories generated by our model. Thanks to 

the motion smoothness reward function, the robotic arm could move along more natural paths, which 

not only improved the stability of the operation but also reduced wear and tear on the mechanical 

components, which is particularly important in industrial settings where maintenance costs are a key 

concern. 

However, some limitations were encountered during our simulations. For instance, the initial setup 

phase required careful tuning of parameters to achieve optimal performance. Additionally, while the 

SAC algorithm performed well in simulated environments, its real-world applicability remains to be 

tested. Future work will focus on implementing a more complex environment by adding additional 

obstacles and generating random obstacle paths to test and prove the effectiveness of our SAC 

algorithm. 
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