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Abstract: Pulmonary nodule segmentation plays a crucial role in the early detection and 

diagnosis of lung cancer, significantly impacting patient outcomes. The U-net model has 

emerged as a useful architecture in medical image processing like pulmonary nodule 

segmentation, gaining widespread popularity. However, U-net suffers from poor fine 

segmentation capabilities and the presence of noise in the segmentation results. In this study, 

we propose an Enhanced U-net model to improve segmentation results. The Enhanced U-net 

uses ECA and CRF modules. ECA module can make the model focus more on important 

features and improve the fine segmentation ability of the model. Meanwhile, CRF module 

allows the model to further refine the results, reduce the noise and boundary discontinuities. 

Utilizing the LIDC dataset, we evaluate the model’s performance through indicators such as 

recall, IoU, Dice score. Our findings show that Enhanced U-net can achieve the best 

performance among all U-net based models. And Enhanced U-net can significantly improve 

segmentation outcomes for small or blurred nodules.  
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1. Introduction 

Pulmonary nodules are small abnormal growths in lung tissue that can indicate the early stages of 

lung cancer [1]. Early and precise diagnosis of these nodules is needed for effective treatment. 

However, the manual segmentation of pulmonary nodules in medical imaging is a labor-intensive and 

time-consuming process typically performed by radiologists. This task not only requires significant 

expertise but is also subject to variability among practitioners, leading to inconsistent results that can 

adversely affect diagnostic accuracy. 

Computed Tomography (CT), a medical imaging technique, can provide cross-sectional images of 

the specific parts of a patient. CT scans are typically presented in DICOM format, which includes 

pixel data as well as critical metadata such as patient information and imaging protocols. The high 

resolution and detailed structure of CT images make them invaluable for diagnosing pulmonary 

nodules. However, the complexity and volume of data can overwhelm manual analysis, necessitating 

the development of automated segmentation methods. 

Despite advancements in computational techniques, manual segmentation remains fraught with 

challenges. One significant issue is the difficulty in achieving fine edge segmentation because of the 

difference in nodule density, size, shape, and the presence of surrounding tissues that can obscure 

clear delineation. Furthermore, pulmonary nodules may appear across multiple slices in a three-

dimensional space, complicating the learning process for neural networks that rely on consistent 
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features across different layers. This spatial correlation is vital for capturing the complete morphology 

of nodules, yet many traditional segmentation methods struggle to integrate information effectively 

across CT layers. 

In addition to these challenges, automatic segmentation methods are often limited by data sets. 

The reliance on limited training data can lead to overfitting, particularly when using complex models, 

thereby reducing the model’s generalization capability. This paper aims to evaluate and compare the 

effectiveness of different advanced neural network models and finally propose an Enhanced U-net 

used in image segmentation. The models used for comparison include 2D U-net, 3D U-net, Efficient 

Channel Attention (ECA) networks, Squeeze-and-Excitation (SE) module, and Conditional Random 

Field (CRF) layers. By leveraging the Lung Image Database Consortium (LIDC-IDRI) dataset [2], 

we seek to enhance the accuracy and reliability of pulmonary nodule segmentation. And ultimately 

make contributions to improved clinical decision-making and patient outcomes. 

2. Related works 

The field of pulmonary nodule segmentation has evolved significantly over the past few decades, 

addressing various challenges through the innovative application of imaging technologies and 

computational methods. Kostis et al. [3] use an adaptive threshold method to initially separate 

pulmonary nodules, and then use morphological algorithms to improve the segmentation results, 

which can initially realize the segmentation task of lung nodules. Dehmeshki et al. [4] propose an 

adaptive segmentation method based on the contrast between pulmonary nodules and background. 

However, the segmentation results of the above methods are limited by the setting of initial conditions, 

and the segmentation effect in the edge region is not good. 

The introduction of convolutional neural networks (CNNs) revolutionizes the field of medical 

image analysis, providing a more robust framework for classification. Kumar et al. [5] implement 

CNNs to classify benign and malignant pulmonary nodules. Long et al. [6] propose a fully 

convolutional neural network (FCN) to perform image segmentation. Instead of convolutional layers, 

they use fully connected layers to enhance the performance of the network. Ronneberger et al. [7] 

propose the U-net architecture based on FCN. U-net’s unique encoder-decoder structure is crucial for 

extracting detailed features while preserving spatial information, which is vital for accurately 

delineating nodule boundaries in medical images. The strengths of the U-net model are its 

effectiveness in localizing features and its capacity to work well with limited training data. However, 

its reliance on 2D representations may limit its performance in capturing volumetric structures 

inherent in CT scans. 

To address this limitation, Ahmed Abdulkadir et al. [8] introduce the 3D U-net architecture. This 

extension significantly enhances the model's capabilities by allowing it to process volumetric data 

directly, capturing richer contextual information and consequently improving segmentation accuracy 

in complex medical imaging scenarios. While the 3D U-net excels at recognizing spatial hierarchies, 

it comes with increased computational demands and memory usage, which can pose challenges in 

resource-constrained environments. 

In a different approach, Jie Hu et al. [9] propose the Squeeze-and-Excitation (SE) module, which 

optimizes feature representation by modeling interdependencies among convolutional features. This 

innovation leads to more insightful learning processes, enhancing the model's sensitivity to salient 

features. However, the integration of the SE module can introduce additional computational overhead, 

potentially requiring more extensive resources. 

To counterbalance this computation cost, Qilong Wang et al. [10] introduce the Efficient Channel 

Attention (ECA) module. ECA maintains the ability to capture cross-channel interactions while 

circumventing the dimensionality reduction challenges found in traditional attention mechanisms. 
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This results in a more computationally efficient model, but its efficacy may vary across different tasks 

compared to more complex attention mechanisms. 

3. Methodology 

To propose a robust neural network architecture, we test several variants of U-net and analyze the 

improvement strategy according to the segmentation results. To solve the problem of insufficient 

boundary feature extraction and the issue of noise, we add attention mechanism and post-processing 

module. The Enhanced U-net shows better performance than original models. 

3.1. Data pre-processing 

The CT images in the LIDC dataset are typically stored in DICOM format. DICOM files contain 

several information, such as patient information, and image orientation, making them vital for clinical 

applications.  

For data preprocessing, we extract the CT images corresponding to each pulmonary nodule and 

resize them into either 2D segments of 32*56 pixels or 3D volumes of 24*32*56 pixels based on the 

nodule's center position. The processed images are divided into three subsets with the following 

distribution: 70% of the data is allocated for training, 10% for testing, and 20% for validation. To 

optimize runtime performance during model training, the images are saved in the more efficient .npy 

format, allowing us to bypass the DICOM reading process later.  

For the training dataset, we horizontally flipped about 50% of the images and generated a random 

number in the range [0,90) for each image as the angle by which the image should be rotated. 

3.2. Framework of Enhanced U-net 

The proposed Enhanced U-net framework integrates the original 2D U-Net architecture with the ECA 

and CRF module. This combination aims to significantly improve the segmentation performance of 

pulmonary nodules by addressing insufficient boundary feature extraction and the issue of noise. 

The base architecture of the Enhanced U-net retains the characteristic encoder-decoder structure 

of the original U-Net, which effectively captures multi-scale features through downsampling and 

upsampling pathways. The encoder progressively reduces the spatial dimensions while increasing the 

feature depth, allowing for the extraction of high-level contextual information. In contrast, the 

decoder reconstructs the segmentation map by merging features from the encoder, facilitating precise 

localization. 

To enhance the extraction of boundary features, we introduce the ECA module to the encoder. The 

ECA module dynamically adjusts the channel-wise attention weights based on the learned importance 

of features, enabling the model to focus on critical areas. This increased focus on relevant features 

helps to overcome the challenge of insufficient boundary delineation. 

Following the segmentation by the U-Net, the CRF module is employed as a post-processing step 

to refine the output. The CRF model leverages contextual information from neighboring pixels, 

allowing for the correction of misclassified areas and the smoothing of segmentation boundaries. This 

refinement step is particularly crucial in reducing noise and enhancing the spatial coherence of the 

segmented regions, leading to more accurate and clinically relevant results. 

The framework of Enhanced U-net is shown in Figure 1. 
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Figure 1: Architecture of Enhanced U-net 

3.3. Improving fine segmentation with ECA module 

The original U-net exhibits limitations in its ability to achieve fine segmentation at the boundary of 

pulmonary nodules. To address this concern, we introduce the ECA module, which allows the model 

to focus more on important features of pulmonary nodules, thereby improving the extraction of 

detailed boundary information.  

ECA module begins with the global average pooling operation to summarize the feature responses 

of each channel. Then ECA module uses a one-dimensional convolutional layer with a 1D kernels of 

size 3 to capture channel dependencies and create attention weights of each channel. By applying 

these weights to the original feature maps, more important features can be paid more attention. 

By using 1D convolution to model channel dependencies ECA module can avoid feature 

dimensionality reduction, thus maintaining more information from the feature maps. This ability to 

capture local inter-channel relationships leads to improved model performance without the overhead 

of fully connected layers.  

 

Figure 2: Effective Channel Attention module [9] 
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ECA module is incorporated into the U-Net architecture by positioning it before the maximum 

pooling operations in the encoder section. After each convolution operation in the encoder, the ECA 

module computes the importance of each channel based on the global contextual information, which 

can emphasize the most informative channels while suppressing less relevant ones. So the ECA 

module can enhance the feature representation, thereby facilitating improved capture of fine details 

and boundaries. 

3.4. Post-processing with CRF module 

The segmentation results of U-net with ECA may contain a small amount of noise. So, we use CRF 

module to further optimize the output. As a probabilistic graphical model, CRF module is used to 

improve segmentation outcomes in image segmentation.[11] CRFs can leverage the spatial coherence 

between neighboring pixels and enforce consistency within the segmented regions. By modeling the 

relationships and contextual information of pixels, CRFs can address the issues of noise and 

inaccuracies in preliminary segmentation results. 

A CRF operates on the predictions of a deep learning model. First, U-net performs a preliminary 

segmentation and outputs the probability that each pixel belongs to a different class. Then the CRFs 

captures the interactions between pairs of pixels, encouraging neighboring pixels to have similar 

labels based on spatial proximity. CRFs need to minimize the energy function of the image, where 

the energy function is given by the formula (1). 

 𝐸(𝑦|𝑥) = ∑ 𝑈(𝑦𝑖, 𝑥𝑖)
 

𝑖
+ ∑ 𝑉(𝑦𝑗, 𝑥𝑗)

 

(𝑖,𝑗)∈N
 (1) 

Where y denotes the label configuration, x represents the observed input features, i indexes 

individual pixels, and N denotes pairs of neighboring pixels. 

In the Enhanced U-net, CRF module is positioned after the segmentation predictions are generated. 

By leveraging local contextual relationships, CRF module can enhance segmentation results and yield 

more coherent and precise segmentations. 

4. Experimental results 

4.1. Dataset and implementation details 

We use Python as our programming language. The experimental environment is built based on 

PyTorch. The computer configuration is as follows: The operating system is Windows11; NVIDIA 

GeForce RTX 4060 LapTop GPU with 16GB RAM. The system memory is 16GB; AMD Ryzen 7 

7735H with Radeon Graphics. 

In this paper, all CT images are screened from the LIDC-IDRI [2] database and cut into 32*56 

pixels or 24*32*56 pixels according to the central position of nodules, which were used as datasets 

for 2D and 3D models respectively. Then, according to the doctor's annotation of pulmonary nodule 

outline in XML, a pulmonary nodule outline label is generated, and the result is shown in Figure 3. 
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Figure 3: Experimental dataset 

When choosing the loss function, we evaluate several loss functions, including Cross-Entropy Loss, 

Dice Loss, and Tversky Loss. Ultimately, we find that Weighted Cross-Entropy Loss yields the best 

performance. To address the issue of imbalanced pixel distribution between the background and the 

nodule, we test different weightings within the Cross-Entropy Loss function. And the best weight is 

[0.2, 1] for [background, nodule], respectively. Weighted Cross-Entropy Loss is given by the formula 

(2). 

 𝐿 = −
1

N
∑ 𝑤𝑦𝑖 · (𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖))

𝑁

𝑖=0
 (2) 

In the training process of the neural network, the optimizer is Adam optimizer. The batch size is 

2. The momentum parameter is 0.95. The learning rate is 10−4. Training iterations are selected as 50 

rounds.  

4.2. Evaluation index 

We use the following evaluation indexes: recall, intersection over union(IoU), and dice score. The 

indexes above are calculated using the following formula. 

 Recall =
TP

TP+FN
 (3) 

 IoU =
1

2
· (

TP

TP+FP+FN
+

TN

TN+FP+FN
) (4) 

 DiceScore =
TP

TP+
1

2
·FP+

1

2
·FN

 (5) 

Recall refers to the ration of correctly predicted nodule area and the summary nodule area. IoU 

calculates the ratio between the area of intersection and union between the predicted result and the 

ground truth. Dice Score assesses how closely the predicted result aligns with the ground truth, which 

is particularly valuable in scenarios with imbalanced classes. All the indicators are between 0 and 1. 

Higher values of the above indicators means a better model. 

4.3. Experimental results and analysis 

In order to accurately describe the performance of Enhanced U-net, we use the following models for 

comparison: 2D U-net, 3D U-net, 2D U-net with SE module, 2D U-net with ECA module, 2D U-net 

with CRF module and Enhanced U-net.  
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Table 1 shows the segmentation results of different networks on the test set. From the result, 3D 

U-net results are worse than 2D U-net results. That is because the number of background pixels in 

the data used by 3D U-net is much larger than the number of nodule pixels, so the current pixel is 

more likely to be predicted as the background when forecasting. Besides, after the addition of SE 

module in 2D U-net, the segmentation effect is almost the same as that of the original network or 

even slightly decreased. That is because SE module makes the model more complex, but the size of 

the data set is small, which may cause overfitting. After the CRF module is added to the original 2D 

U-net, the performance is significantly improved. The reason is that CRF considers global image 

information to enhance segmentation, while U-net can only capture local features and cannot use 

global context information.  

The Enhanced U-net proposed in this paper has the best result of IoU and Dice Score among all 

models. That is because ECA module empowers the network by refining its feature representation 

capabilities, allowing it to mitigate the influence of less informative background areas. Concurrently, 

CRF module enhances the spatial coherence of the segmentation results by incorporating global 

contextual information, enabling the model to reduce boundary discontinuity. Consequently, the 

Enhanced U-net demonstrates the best performance among the evaluated networks. 

Table 1: Results of different segmentation networks 

Network Recall IoU Dice Score  

U-net 0.9050    0.7757 0.7638 

3D U-net 0.9064   0.7496 0.7651 

U-net+SE 0.9115   0.7681 0.7661 

U-net+ECA 0.9246   0.7881 0.7703 

U-net+CRF 0.8711 0.7835 0.7709 

Enhanced U-net 0.9086 0.7908 0.7801 

 

The results of different segmentation networks can be seen in Figure 4. In the figure, the pulmonary 

nodule image is in column 1, the gold standarder outline marked by doctors is in column 2, and the 

following columns are results using different models. 

 

Figure 4: Comparison of different networks’ results 
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As illustrated in Figure 4, the segmentation results from the original U-Net exhibit noticeable noise, 

particularly in the boundary regions. After integrating the ECA module, the accuracy of edge 

segmentation is improved, although some noise still persists. Further improvement is achieved with 

the introduction of the CRF module, which significantly reduces noise and substantially enhances the 

overall segmentation results. By combining the strengths of both the ECA and CRF modules, the 

Enhanced U-Net demonstrates the best segmentation performance, effectively minimizing noise 

while achieving better boundary accuracy.  

5. Conclusion 

In this paper, we propose an Enhanced U-net used for pulmonary nodule segmentation. The Enhanced 

U-net uses ECA and CRF modules. The ECA module enables the model to concentrate on the most 

significant features, enhancing its fine segmentation capability. At the same time, the CRF module 

facilitates the refinement of results, minimizing noise and discontinuities at the boundaries. The 

combination of ECA and CRF module can significantly optimize U-net segmentation results, which 

are suitable for pulmonary nodal segmentation tasks. However, the model in this paper still has some 

limitations. When constructing 2D data set, only one image was selected for each nodule, while other 

slices were ignored. As a result, the data set was small and the performance on complex networks 

was deficient. In the future, we plan to explore the use of transformers to enhance the segmentation 

performance, because transformers has achieved excellent segmentation performance in the current 

image segmentation task. Different data augmentation techniques are employed to increase the size 

of the training dataset so that it can support larger model architecture. 
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