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Abstract. Analog circuit fault diagnosis is growing common using techniques based on 

artificial intelligence (AI). Among these, defect diagnosis based on radial basis function (RBF) 

has recently received attention and has demonstrated a respectable level of accuracy. This 

paper's goal is to demonstrate this method's thought process, methodology, and specific actions. 

Researchers can refer to the reference circuit diagram, experimental table, and analytic process 

in the publication to evaluate the efficacy of this approach. Additionally, the elements that can 

be changed and improved upon are highlighted, offering a path for future study. 
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1.  Introduction 

Recently, there has been a lot of research done on artificial intelligence, which is now widely used in a 

variety of industries. The diagnosis of analog circuit faults, on the other hand, is a constant concern in 

the field of electrical engineering because it can guarantee that the electronic system is in good 

operating condition before it is put to use and enables quick detection of the electronic system on the 

computer to confirm the running status. However, conventional categorization and diagnosis methods 

are unreliable and require a lot of work. Based on these two factors, it makes sense to use artificial 

intelligence to address the issue of fault identification. RBF offers a strong capacity for information 

parallel processing, a potent capacity for adaptive learning, and a capacity for nonlinear mapping, 

making it one of the greatest artificial intelligence and neural network methodologies. 

The issue of radial basis function (RBF) fault detection of analog circuits will be covered in this 

study. The RBF model will be introduced together with its underlying theory and guiding principles 

after a brief summary of earlier efforts. In the third section, a specific circuit problem will be discussed 

and solved using the RBF method. After that, the procedures will be streamlined and enhanced, and 

the advantages and disadvantages will be reviewed. Next, a succinct conclusion will be given. 

2.  Literature review 

RBF neural network is a type of local approximation network. Given that each weight on the network 

must be altered for each input, global approximation networks like the BP network have a slow 

learning rate. If a few link weights have an effect on the output for a particular limited region of the 

input space, the network is said to be a local approximation network. The three most common RBF 

functions are the Gaussian function, Inversion of s-type functions, and Quasi multi-quadratic function. 
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The RBF approach has undergone the following development. The fundamental RBF conducts 

fault simulation of an analog circuit using a constant amplitude sinusoidal signal source. It also 

establishes a fault dictionary by extracting characteristic values of the output signal waveform from 

the frequency domain. A number of optimizations then arise. First off, the multi-output decay Radial 

basis function (MDRBF) can do uniform approximation with arbitrary precision without training, 

Single - Output DRBF (SDRBF) neural network can only be used to handle the problem of a Single 

output variable. This significantly decreases the complexity of model development. [1]. Second, the 

RBF Neural Network Local Retraining Algorithm modifies and expands the algorithm in the topology 

of the power network, which may greatly enhance the RBF Neural Network's Relearning Efficiency. 

Thirdly, RBFNN based on the adaptive K_ means clustering algorithm outperforms RBFNN based on 

the conventional K_ means clustering algorithm, BPNN, and IEC ratio approach. Additionally, 

adaptive training and the multi-core MKALSSVR design can decide how many training[2]. The multi-

kernel design alters the RBF's width and offers more versatile tuning options. This makes it possible to 

process analog circuit evaluation online. This approach enables vector sparsity and prevents norm 

LSSVR overflow. Additionally, MKALSSVR is both inexpensive and accurate in its evaluation[3]. 

There are currently a number of optimization techniques for diagnosing analog circuit faults. The 

first is the fuzzy neural network, which mimics the functional manual system and physical systems of 

the human brain using computers that are already in existence. The wavelet analysis is the second. On 

the basis of wavelet analysis and investigation into a particular type of feed-forward network, the 

wavelet neural network was introduced. Its foundation is the RBF network. The fundamental concept 

is to replace neurons with wavelets. The wavelet function base is the activation function. By using an 

affine transform, it establishes a link between the wavelet transform and neural networks.[4]. 

The essential steps in an analog circuit diagnosis based on RBF are to choose the test point, define 

the fault type for the particular circuit, and ascertain the network topology. Ltspice is used to get 

training sample material. After training, an RBF network is produced. The test point's input vector 

serves as the network's input and the associated fault is the output. The element tolerance is allocated 

uniformly throughout each training scenario at 5%. 

3.  Methodology 

3.1.  Radial Basis Function Network 

 

Figure 1. Structure of RBF neural network. 

There are three layers in the RBF neural network: an input layer, a hidden layer, and an output layer. 

The independent variables, defined as Xk(k = 1,2, . . . , K) , inputted into the first layer, and then 
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transported to the middle layer. In the hidden layer, a series of calculations operates the independent 

variables, which are called the φ functions. A series of linear combinations is used to transfer the 

computations' results to the output layer. The weights for each individual linear combination are 

defined as  wij(i = 1,2, . . . , I, j = 1,2, . . . , J). The dependent variables, designated as Yj(j = 1,2, . . . , J),  

represent the output of the linear combinations. Following is an explanation of the two formulars used 

in this process:  

Firstly, the φ functions are defined as  

φ(Xk,Ci) = e
(−

‖Xk−Ci‖2

2σi
2 )

(1) 

Different φ function has different parameters, defined as Ci, which should be found by machine 

learning. The φ functions are also called RBF functions, which is the characteristic of RBF method. 

RBF function is a set of functions. The RBF function used in this research is the Gaussian function, 

which plays the role of an activation function in this neural network. 

Secondly, the linear combinations are defined as   

yj(X) = w0j + ∑ wijφ(Xk, Ci), j = 1,2, … , J

M

i=1

(2) 

It includes a constant as the reference plane and the linear combination of the results of the φ 

calculations by different weights. 

The basic training process of RBF neural network is: firstly, input the independent variables, guess 

the parameters (Ci,wij); and then, get the predicted values of the dependent variables, compare it with 

the actual values and calculate E; guess the parameters again to reduce E, until the parameters to the 

minimum of E are found. E is defined as 

E =
1

2
∑(yd − yi)

2

M

i=1

(3) 

3.2.  Analog circuit fault diagnosis 

RBF neural network can learn from the sample set and identify the defect in the circuit in the analog 

circuit fault diagnosis problem. A studyable example circuit is the one that follows. 

Proceedings of the 3rd International Conference on Signal Processing and Machine Learning
DOI: 10.54254/2755-2721/6/20230967

822



 

 

 

 

 

 

 

Figure 2. Reference circuit. 

The circuit to study consists of N devices, defined as D1, D2, . . . , DN. Only considering the fault of a 

single device, there are 2N  different fault conditions, defined as DN  High and DN  Low. DN  High 

represents the actual value of the element that is higher than the set value in the circuit illustrated 

above within certain limits. The limits can be different for different types of devices and in this 

research, we only focus on the resistors and capacitors. For the resistors, DN High means the actual 

value is 110% to 150% greater than the set value. DN Low means the actual value is 50% to 90% 

smaller than the set value. From 90% to 110% is the permissible range considered normal. For the 

capacitors, DN  High means the actual value is 105% to 150% greater than the set value. DN  Low 

means the actual value is  50%  to 95%  smaller than the set value. From 95%  to 105%  is the 

permissible range considered normal (the principle is shown in Table.1).  

Table 1. Principle of defining condition. 

Element types Conditions Value Range 

Resistor Low [50%, 90%) 

Normal [90%, 110%] 
High (110%, 150%) 

Capacitor Low [50%, 95%) 

Normal [95%, 105%] 
High (105%, 150%) 

Among the 2N fault conditions, we can choose n conditions from them to diagnose. In the example 

above, there are eight deceives and we choose eight different fault conditions to diagnose. Then we 

should represent the 2n + 1 conditions(2n fault conditions and one normal condition) by the target 

vectors Y with n features Y1, Y2, . . . , Yn. That is Y = Y1Y2. . . Yn. The normal condition is defined as Y =
00. . .0. We define the 2n fault conditions as F1, F2, . . . , Fn , then when Fi(i = 1, . . . n) happens, the 

(2n + 1 − i)th component of the target vector Y will be 1.  
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Table 2. Fault dictionary (n dimensions). 

Fault code Fault type Target vector Y(2n features) 

F0 Normal  0000. . .0000 

F1 D1 High 0000. . .0001 

F2 D1 Low 0000. . .0010 

F3 D2 High 0000. . .0100 

F4 D2 Low 0000. . .1000 

. 

. 

. 

. 

. 

. 

. 

. 

. 
Fn−1 DN High 0100. . .0000 

Fn DN Low 1000. . .0000 

In the given example, 2n = 8, so the faults are defined as follows.  

Table 3. Fault dictionary (8 dimensions). 

Fault code Fault type Target vector Y(8 features) 

F0 Normal 00000000 

F1 R1 High 00000001 

F2 R1 Low 00000010 

F3 R3 High 00000100 

F4 R3 Low 00001000 

F5 C1 High 00010000 

F6 C1 Low 00100000 

F7 C2 High 01000000 

F8 C2 Low 10000000 

There are seven steps in the process of using RBF to achieve analog circuit diagnosis. 

Step 1: An amplitude-frequency analysis should be performed to select the frequency for testing. 

Compare the parameter amplitudes of normal and faulty devices at different frequencies and choose m 

frequencies with the largest amplitude difference to be the test frequencies. The number of test 

frequencies can be determined according to the actual situation. Then set the input power source as 

Vin1 = sin2f1 × 103πt v,Vin2 = sin2f2 × 103πt v,. ..,Vinm = sin2fm × 103πt v. In the example, the 

amplitude-frequency analysis is as follows, it can be seen from the graph that the amplitude difference 

is most obvious in the range of 5kHz to 10kHz, so we choose 6kHz, 7kHz, and 9kHz as the test 

frequencies. That means the input power source should be determined as Vin1 = sin12 × 103

πt v,Vin2 = sin14 × 103πt vand Vin3 = sin18 × 103πt v respectively. 

Step 2: Find out the test points. The locations and number of test points can be chosen and adjusted 

according to the actual circuit. We choose t test points,T1, T2, . . . , Tt. In the example, we choose V1 and 

V2 as the test points(t = 2). Measure V1(6kHz,7kHz,9kHz) and V2(6kHz,7kHz,9kHz). 

Step 3: Define the independent variable X  with mt  features X1, X2, . . . , Xmt , representing 

T1 ( f1, f2, . . . , fm ), T2 ( f1, f2, . . . , fm ), . . . , Tt ( f1, f2, . . . , fm ). In the example, X = X1X2X3X4X5X6 , 

representing V1(6kHz,7kHz,9kHz) and V2(6kHz,7kHz,9kHz) respectively.  

Step 4: In step 3, we get the independent variable X for the normal case, so the corresponding 

Y should be Y = 000000000. Change the parameter of D1 to D1 High, measure T1, T2,. . . , Tt again on 

the m different frequency. Similarly, we can get more samples for every fault conditions. The 

recommended number of samples for every condition is 10mt, so there are 10mt × (2n + 1) samples 

in total in the learning sample set. Input the learning sample set to the RBF neural network. After 
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learning, the RBF neural network will find out the parameters, Ci and wij, for analyzing the circuit. In 

the example, mt = 6, n = 4, so there are 60 × 9 = 540 samples in the learning sample set. They are 

shown as follows. 

Table 4. Reference experimental table (8 dimensions). 

Fault 

code 

Fault 

type 
Input vector X(6 features) Target  

vector Y(8 

features) V1(6kHz) V1(7kHz) V1(9kHz) V2(6kHz) V2(7kHz) V2(9kHz) 

F0 Normal . ..      00000000 

F1 R1 

High 

      00000001 

F2 R1 

Low 

      00000010 

F3 R3 

High 

      00000100 

F4 R3 

Low 

      00001000 

F5 C1 

High 

      00010000 

F6 C1 

Low 

      00100000 

F7 C2 

High 

      01000000 

F8 C2 

Low 

      10000000 

Step 6: Use a similar method to get the test sample set. The number of samples for every condition can 

be chosen accordingly. In the example, we choose 20 samples for every condition, so there are 

20 × 9 = 180 samples in the test sample set. 

Step 7: Test the accuracy of the analog circuit diagnosis based on RBF neural network. Record the 

number of correct diagnosis for every condition and calculate the accuracy rate. It is shown as follows: 

Table 5. Reference experimental table (2n dimensions). 

Fault code Fault type The number of correct 

diagnosis(s samples) 

The type identification 

accuracy rate % 

F0 Normal  C1 C1/s × 100% 

F1 D1 High C2 C2/s × 100% 

F2 D1 Low C3 C3/s × 100% 

F3 D2 High C4 C4/s × 100% 

F4 D2 Low C5 C5/s × 100% 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 
F2n−1 DN High C2n−1 C2n−1/s × 100% 

F2n DN Low C2n C2n/s × 100% 

If the accuracy rate for every condition is higher than 90%, we can say the method of using RBF 

neural network to achieve analog circuit fault diagnosis is reliable in this research.   
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4.  Discussion 

If you wish to diagnose the simultaneous fault of two components, define it as a new type of fault that 

requires the same number of samples to input to the RBF network learn in order to get the correct 

diagnosis output. In this way, (2
n

) more fault types should be defined, and (2
n

) × 10mt more samples 

are required as learning samples.  

Similarly, the simultaneous failure of several or even n components can be generalized. You just 

need to specify the component's range of fault values and add learning samples in the same manner if 

you wish to diagnose problems in components other than resistors and conductors. 

The number of X 's dimensions, such as the frequency and number of test points, can be increased 

in order to increase accuracy rates. On the other hand, to raise the accuracy rate until it achieves a 

constant value, you can increase the quantity of learning samples. 
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