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Abstract: Low-dose CT (LDCT) images are often accompanied by significant noise, which 

negatively impacts image quality and subsequent diagnostic accuracy. To address the 

challenges of multi-scale feature fusion and diverse noise distribution patterns in LDCT 

denoising, this paper introduces an innovative model, CTLformer, which combines 

convolutional structures with transformer architecture. Two key innovations are proposed: a 

multi-scale attention mechanism and a dynamic attention control mechanism. The multi-scale 

attention mechanism, implemented through the Token2Token mechanism and self-attention 

interaction modules, effectively captures both fine details and global structures at different 

scales, enhancing relevant features and suppressing noise. The dynamic attention control 

mechanism adapts the attention distribution based on the noise characteristics of the input 

image, focusing on high-noise regions while preserving details in low-noise areas, thereby 

enhancing robustness and improving denoising performance. Furthermore, CTLformer 

integrates convolutional layers for efficient feature extraction and uses overlapping inference 

to mitigate boundary artifacts, further strengthening its denoising capability. Experimental 

results on the 2016 National Institutes of Health AAPM Mayo Clinic LDCT Challenge 

dataset demonstrate that CTLformer significantly outperforms existing methods in both 

denoising performance and model efficiency, greatly improving the quality of LDCT images. 

The proposed CTLformer not only provides an efficient solution for LDCT denoising but 

also shows broad potential in medical image analysis, especially for clinical applications 

dealing with complex noise patterns. 
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1. Introduction 

Computed Tomography (CT) is a high-precision clinical imaging tool that uses rotating X-ray beams 

or other penetrating radiation to scan the body. Detectors collect the signals, and reconstruction 

algorithms generate high-resolution cross-sectional images, which can be combined into 3D 

structures. CT offers better tissue resolution and faster scanning than traditional X-ray imaging, 

making it particularly useful in diagnosing neurological, thoracoabdominal diseases, trauma, and 
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tumors. However, its widespread use raises concerns about radiation dose safety. Long-term exposure 

to high-dose ionizing radiation may increase cancer risk, especially for children and patients needing 

multiple scans. Recently, Low-Dose CT (LDCT) technology has gained attention. It reduces radiation 

dose but causes image noise and detail loss. Advanced algorithms like deep learning (CNN, 

Transformer, etc.) have been introduced in biomedical image processing to solve these issues, with 

image denoising, super-resolution reconstruction, and structure enhancement for LDCT images 

becoming hot research topics [1,2]. 

Low-Dose Computed Tomography (LDCT) has been developed as an alternative to reduce the X-

ray dose. The radiation used in LDCT is significantly lower than that in traditional CT, approximately 

one-quarter of the dose used in standard CT, resulting in less radiation-induced harm to the body[3]. 

Traditional low-dose CT (LDCT) denoising methods often rely on physical models and prior 

knowledge through iterative algorithms. While effective in theory, these methods are computationally 

intensive and challenging to deploy in commercial CT systems due to hardware constraints [4]. With 

the advancement of deep neural networks (DNNs), learning-based approaches—especially 

convolutional neural networks (CNNs) [5]—have become mainstream in biomedical image denoising. 

CNNs perform well in extracting local features and reducing noise but struggle with capturing global 

dependencies due to limited receptive fields and pooling operations that discard spatial details. 

Additionally, most CNNs lack interpretability, a critical requirement in clinical applications where 

explainability is essential for decision support [6]. To overcome these limitations, recent work has 

explored attention-based models like Transformers, which offer better global feature modeling and 

can preserve structural integrity in complex medical images such as LDCT, MRI, or ultrasound. These 

models improve both performance and clinical relevance [7]. 

Transformer models have achieved remarkable results in computer vision and show potential to 

surpass CNNs. They excel at capturing global information and long - range feature interactions, 

enabling them to leverage richer data. As depicted in Figure 1, Transformers generate more effective 

features than CNNs. In biomedical image processing, where precision is crucial, Transformers can 

identify subtle patterns in complex images like CT scans and MRIs, aiding in tasks such as tumor 

detection and disease diagnosis. Their self - attention mechanisms also enhance the reliability of AI 

- assisted diagnostic tools by providing better visual interpretability [8]. 

CTFormer performs well in low-dose CT denoising by capturing long-range dependencies, but 

struggles with local detail and multi-scale structure preservation. To address this, we propose 

CTLformer with two key innovations. First, we introduce a multi-scale attention mechanism with 

local-global interaction, incorporating a multi-scale Token generation module within Token2Token 

to capture both fine (small-scale) and global (large-scale) features. In the self-attention module, an 

interaction unit distinguishes local and global attention ranges, alternately enhancing their weights to 

better preserve textures and structures. Second, we propose a dynamic attention control mechanism 

to handle varied noise distributions. A lightweight module (MLP or convolution) computes dynamic 

adjustment factors based on image noise or texture, reallocating attention accordingly. This 

mechanism emphasizes high-noise areas while preserving low-noise regions, improving both 

denoising and detail retention. Together, these enhancements significantly boost CTLformer’s 

adaptability, robustness, and performance in real-world clinical applications. 
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Figure 1: Architecture of our method  

2. Methodology 

2.1. Multi-scale attention mechanism with local-global interaction 

To address the challenge of preserving fine details and multi-scale structures in low-dose CT images, 

we propose a multi-scale attention mechanism with local-global interaction[9]. This mechanism is 

implemented through two main components: the Token2Token mechanism and an enhanced self-

attention module with interaction capabilities. The Token2Token mechanism is designed to capture 

fine details and global structures at different scales. The process begins with generating multi-scale 

tokens that represent both fine details (small-scale features) and global structures (large-scale 

features). This is done by applying convolution operations to the input CT image to extract multi-

resolution feature maps. These feature maps are then used to generate tokens that capture information 

at different resolutions.The generated tokens are passed through the Token2Token mechanism, where 

each token represents either a fine detail (e.g., edges or textures) or a global feature (e.g., background 

or large structures). The interaction between these tokens allows for the exchange of information 

across different scales, ensuring that both fine details and global structures are preserved throughout 

the model. This multi-scale representation is crucial for maintaining image quality in low-dose CT 

images, where fine details are often lost. 

This interaction module enables the model to focus on edge features and fine details when 

necessary, while also attending to the global context to preserve the overall image structure. By 

balancing these two aspects, the model can improve noise reduction and enhance the preservation of 

image quality in noisy low-dose CT scans. 

2.2. Adaptive noise-aware attention mechanism 

In addition to the multi-scale attention mechanism, we introduce a dynamic attention control 

mechanism to address the challenge of varying noise distributions across CT images. Low-dose CT 

images can exhibit different levels of noise, which can hinder the model’s ability to preserve fine 

details. To adapt to these varying noise levels, we propose a dynamic weighting adjustment module 

integrated within the Transformer block of CTformer. 

The dynamic weighting adjustment module is designed to adjust the attention distribution 

dynamically based on the noise characteristics and texture features of the input image. A lightweight 

network, a Fully connected layer, is used to generate dynamic attention adjustment factors. These 

factors are derived from the noise patterns of the input image and are used to reallocate the attention 

weights across different regions of the image. 

This dynamic adjustment allows the model to focus more on high-noise regions, where noise 

suppression is more critical, while allocating less attention to low-noise areas where detail 

preservation is more important. The ability to adaptively adjust the attention ensures that the model 
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performs well across a variety of noise distributions, making it more suitable for clinical applications 

where noise patterns can vary significantly. 

To further enhance the model’s noise reduction capabilities, we prioritize high-noise regions by 

increasing the attention on these areas. Using the dynamic attention adjustment factors, we detect 

noisy regions within the input image and reallocate attention weights accordingly. This ensures that 

high-noise areas receive more focus for suppression, while low-noise areas maintain fine details. 

This approach not only improves noise reduction but also ensures that the model can preserve fine 

details in less noisy regions. The dynamic adjustment of attention weights allows the model to adapt 

to diverse noise environments, improving its robustness and effectiveness in real-world clinical 

scenarios. 

 

Figure 2: Architecture of Token2Token block 

3. Experiments and analysis 

3.1. Dataset 

Model training and testing relied on the publicly available dataset from the 2016 National Institutes 

of Health AAPM Mayo Clinic LDCT Challenge [10]. The dataset comprises 2,378 low-dose (quarter-

dose) and normal-dose (full-dose) CT images with a 3.0mm slice thickness, sourced from 10 

anonymized patients. For model evaluation, cross-validation was implemented, allocating images 

from 9 patients to the training set and reserving those from 1 patient for testing. Moreover, as part of 

the data augmentation strategy, the original images underwent random rotations and flipping to 

enhance dataset diversity. 

3.2. Evaluation metrics 

In biomedical image processing, especially in tasks like low-dose CT (LDCT) and MRI 

reconstruction, accurate and perceptually meaningful quality assessment is essential. To evaluate the 

performance of different models, we adopted three widely used quantitative metrics: Root Mean 

Square Error (RMSE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure 

(SSIM), and also compared the number of parameters across models. RMSE measures the average 

magnitude of pixel-wise errors between the reconstructed and reference images, with larger values 

indicating poorer reconstruction accuracy. PSNR, derived from Mean Squared Error (MSE), 

quantifies image fidelity by comparing the maximum possible signal to the noise level; higher values 

suggest less distortion. Unlike RMSE and PSNR, SSIM focuses on structural information, luminance, 

and contrast, offering a perceptual similarity score between 0 and 1, where a higher score indicates 

better structural preservation. Since biomedical images require high structural fidelity for clinical 

diagnosis, SSIM is particularly valuable in assessing the perceptual quality of reconstructed images. 
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Additionally, model parameter comparisons help balance performance and computational efficiency 

for practical deployment [11]. 

 

Figure 3: Denoising results using the proposed method on L506 

3.3. Implementation details 

The experiments are conducted on a platform running Windows 11, with a 13th Gen Intel(R) 

Core(TM) i9-13900HX, 2.20 GHz. The model is implemented using PyTorch 2.0.0 and CUDA 11.3. 

Training is performed on a GeForce RTX 4080 GPU platform with a batch size of 4. The initial 

learning rate is set to 0.0001.  

3.4. Experiment result    

To comprehensively assess the denoising performance of the proposed CTLformer model in low-

dose CT (LDCT) imaging, we selected slice 057 from patient L506 in the test set as a representative 

case, along with its corresponding region of interest (ROI) images. As shown in Figure 3 and detailed 

in Table 1, noise is mainly concentrated in the abdominal region, severely affecting the clarity of 

organ boundaries and tissue structures. Striped artifacts in the liver and spine regions further 

complicate clinical diagnosis. Among the compared methods, RED-CNN—a residual encoder-

decoder convolutional neural network—effectively reduces high-frequency noise while preserving 

some texture details. However, due to its limited receptive field and reliance on local convolutions, it 

struggles to recover global anatomical structures. CTformer, built on a Transformer architecture, 

models long-range dependencies well but lacks convolutional layers, leading to over-smoothed 

textures and blurred soft-tissue details. In contrast, CTLformer integrates the strengths of both 

convolution and attention mechanisms, achieving a better balance between noise suppression and 

detail preservation. Quantitatively, it outperforms CTformer with a higher SSIM (0.9141 vs. 0.9120) 

and a lower RMSE (9.0133 vs. 9.0223), highlighting its superior reconstruction quality. In biomedical 

imaging, especially under low-dose conditions, maintaining fine structural details while suppressing 

noise is critical for diagnostic reliability, and CTLformer demonstrates strong potential in addressing 

this challenge. 

Table 1: Comparison different algorithms on the L506 

Method  SSIM RMSE params 

LCDT 0.8759 14.2416 - 

RED-CNN 0.9077 10.1044 1.85M 

WGAN-VGG 0.9008 11.6370 34.07M 

CTformer 0.9120 9.0223 1.45M 

CTLformer 0.9141 9.0133 1.85M 
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Table 1 presents quantitative comparisons of the proposed CTLformer against several existing 

models on test images from patient L506. The metrics evaluated include Structural Similarity Index 

(SSIM), Root Mean Square Error (RMSE), and the number of parameters (params). CTLformer[12] 

achieved the highest SSIM score of 0.9141, indicating superior perceptual similarity to ground truth 

images compared to all other tested models. Additionally, CTLformer recorded the lowest RMSE 

value of 9.0133, demonstrating its effectiveness in minimizing reconstruction errors, thereby 

confirming enhanced denoising performance. 

When comparing CTLformer against RED-CNN, it is evident that while RED-CNN effectively 

reduces noise, its limited receptive field restricts its ability to restore global image structures, resulting 

in incomplete denoising. In contrast, CTformer, although proficient in capturing global context, 

suffers from excessive smoothing, leading to loss of fine details and blurred textures. CTLformer 

effectively overcomes these limitations by incorporating convolutional layers for local feature 

extraction and Transformer blocks for global context comprehension, thus preserving critical image 

details such as organ contours and textures while significantly reducing noise and artifacts. The 

parameter count further underscores the efficiency of CTLformer. With only 1.85 million parameters, 

CTLformer achieves superior results compared to WGAN-VGG and other methods, indicating an 

optimal balance between computational efficiency and performance. 

4. Conclusion 

In this paper, we introduce CTLformer, a novel low-dose CT (LDCT) denoising model that combines 

convolutional structures with transformer architecture. By incorporating a multi-scale attention 

mechanism and a dynamic attention control mechanism, CTLformer achieves significant 

improvements in denoising performance and model efficiency. The multi-scale attention mechanism 

captures both fine details and global structures through the Token2Token mechanism and self-

attention interactions, enhancing important features while suppressing irrelevant noise. The dynamic 

attention control mechanism adapts attention based on noise distribution, focusing on high-noise areas 

and preserving details in low-noise regions, improving robustness. CTLformer also integrates 

convolutional layers for feature extraction and uses overlapping inference to reduce boundary 

artifacts. Experimental results show that CTlformer outperforms existing methods in both denoising 

and efficiency, providing an advanced solution for LDCT denoising with potential applications in 

medical image analysis. 
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