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Abstract: Emotion, as a unique attribute of human beings, is an important research direction 

of human-computer interaction by using the developed artificial intelligence technology. 

Although the existing research has reached a high accuracy, the efficiency problem has not 

been completely solved. Aiming at the time-consuming and labor-consuming problem of 

hyperparameter optimization in traditional deep learning, this paper proposes an automatic 

parameter adjustment method combining reinforcement learning (RL) and revolutionary 

neural network (CNN). Based on the DEAP data set, a lightweight 2d-cnn model is 

constructed by using the temporal and spatial characteristics of EEG signals, and the super 

parameters such as dropout probability and batch size are dynamically optimized by using 

the proximal strategy optimization (PPO) and deep deterministic strategy gradient (DDPG) 

algorithms, respectively. Experiments show that the reinforcement learning driven parameter 

adjustment method significantly improves the performance of the model: PPO and DDPG 

respectively improve the accuracy of CNN from 69% to 71%, and DDPG achieves the 

optimal results in fewer training rounds. In addition, the parameter trajectory analysis shows 

that agents tend to increase the batch size and reduce the dropout probability to balance the 

risk of feature retention and overfitting. This study verifies the potential of reinforcement 

learning in hyperparameter optimization, and provides a new idea for automated optimization 

of complex models. Future work will be extended to higher dimensional parameter space and 

multimodal data fusion scenarios.  

Keywords: Reinforcement learning, EEG emotion classification, automatic hyperparameter 

tuning, CNN, PPO and DDPG algorithms. 

1. Introduction 

Emotion is a unique attribute of human beings. It is an important driving force for us to recognize the 

world and act. It plays a key role in interpersonal communication and social interaction. In recent 

years, with the rapid development of artificial intelligence technology, emotion recognition has 

become one of the core technologies to promote artificial intelligence to human-computer interaction 

naturalness and strong artificial intelligence. Although the traditional AI system performs excellently 

in logical reasoning and data processing, it is difficult to perceive and understand the human 

emotional state, which seriously restricts the deep investment and application of AI in the fields of 

education and medical treatment. In this context, exploring efficient and accurate emotion recognition 

methods will become a research focus in the future. 
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Nowadays, the mainstream method of emotion recognition is to analyze the directly collected 

human physiological signals to ensure the objectivity of emotional information. These signals include 

EEG, EOG, ECG, etc. In recent years, most researchers have used traditional machine learning and 

deep learning for emotion recognition based on EEG. In traditional machine learning, some research 

based on frequency domain feature extraction and SVM model can achieve an accuracy of about 91.7% 

[1]. In terms of deep learning, CNN and LSTM models and their variants are the most mainstream in 

the field of EEG emotion classification [2, 3, 4]. Among them, the research based on GCN model and 

its optimization model has achieved an accuracy rate of more than 90% [5, 6, 7]; The research based 

on LSTM model and its variants has also made considerable achievements [8, 9]; Based on the 

experiments of CNN and LSTM models [10, 11, 12], they achieved 80%-98% accuracy in DEAP 

[13], SEED, SEEDV and other data sets. However, the process of continuous optimization of the 

model, often means more complex model architecture and parameters that need to be constantly 

debugged. Researchers will spend a lot of time to find the optimal parameters. At present, the main 

methods to find parameters are grid search [14, 15], random search, etc. These algorithms will 

consume a lot of resources, so this paper proposes a method to find the optimal combination of super 

parameters based on reinforcement learning, and verifies the effect of this method through emotion 

recognition based on EEG. 

2. Dataset and preprocess 

2.1. DEAP dataset 

DEAP is a public multimodal emotion recognition data set built by Koelstra et al. In 2012 [15]. It 

synchronously collected EEG signals and peripheral physiological signals of 32 subjects while 

watching 40 music videos, and combined with subjective emotion score, established a complete 

mapping relationship between emotion induction, physiological response and subjective feedback. 

The DEAP dataset consists of two parts. One is a database of 120 one-minute music videos. Each 

video is scored by 14-16 volunteers according to potency, arousal and dominance. The other is a 

subset of the former, which is composed of 40 Music Videos. Each video has the corresponding EEG 

and physiological signals of each participant in the 32 participants. Each video is scored according to 

potency, arousal and dominance dimensions. The second part of the DEAP data set is used in this 

paper. Figure 1 shows the distribution of electrode plates and Arousal-Valence model of emotions. 

 
Figure 1: Arousal-valence model of emotions and electrode distribution for EEG signal acquisition 

[15] 

The original data in the DEAP dataset contains preprocessing information for each of the 32 

participants, including data and labels. The data is a 40 x 40 x 8064 array, including 8064 time points 
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of each channel in 40 channels and each channel in 40 Music Videos (experimental time 63s × 

sampling frequency 128Hz). The tag is a 40 x 4 array, containing the potency, wake-up, domination 

and link notes of each of the 40 Music Videos. 

2.2. Dataset preprocessing 

In this paper, eight non-EEG signals such as EMG and ECG are eliminated to prevent the influence 

of irrelevant signals on the experimental results. The processed data shape is (328064). Then, this 

paper reduces the dimension of the relevant data from 8064 time points to 99 statistical features, and 

changes its shape to (32, 99). Specifically, the 8064 time points of each EEG channel are first divided 

into 10 batches, including 9 batches containing 807 time points and one batch containing 801 time 

points. Then, calculate 9 Statistics (mean, median, maximum, minimum, standard deviation, variance, 

range, skewness, kurtosis) for each batch, and make the first 90 characteristics of each channel come 

from 10 batches × 9 statistics. Finally, calculate the same 9 statistics for all 8064 time points of each 

channel, so that each channel gets 90 (batch characteristics) + 9 (global characteristics) = 99 

characteristics. Then, each sample feature should be standardized one by one, specifically through 

the following formula (1). 

𝑥𝑖 =
𝑥𝑖 − 𝑚𝑒𝑎𝑛(𝑥𝑖)

𝑠𝑡𝑑(𝑥𝑖)
(1) 

Where 𝑥𝑖 is a statistic, and the value range of I is [1,9]. Finally, this paper extracts the first two 

tags of each experiment, packs them and the processed data into a dictionary, serializes them into .dat 

files through pickle, and stores them in the target directory. 

3. Methods 

3.1. Deep learning 

In this experiment, the CNN model uses a three-layer convolution structure for feature extraction and 

classification of EEG signals, and its specific structure is shown in Figure 2. 

 

Figure 2: CNN model structure (picture credit: original) 

The input layer of the model is EEG data of (batch, 1, 32, 99), which corresponds to 32 electrode 

channels and 99 time points. The first convolution layer uses 32 (3 × 5) cores, maintains the size of 

the feature map through (1,2) symmetrical filling, and cooperates with the LeakyReL activation 
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function and (2 × 2) maximum pooling. The main function of this layer is to capture the local temporal 

and spatial characteristics of the original EEG signal; In the second layer, 64 (3 × 3) convolution 

cores are used to reduce the pooled feature map to 8 × 24, retain the key time dynamic information 

and suppress noise interference; The third layer is extended to 128 channels to maintain the resolution 

of the feature map. Then, the spatial dimension is compressed to (1 × 1) by global average pooling. 

Then, the dropout layer is added in front of the full connection layer. This layer randomly closes some 

neurons depending on the dropout probability input, so that the network can avoid excessive 

dependence on specific local features, inhibit the over fitting of the model and enhance the 

generalization ability. Finally, after a full connection layer outputs the predicted value, the weighted 

moments of the full connection layer combine the 128 dimensional features to generate the non-

normalized classification scores (Logits). Combined with the loss function (BCEWithLogitsLoss), 

this layer directly outputs the discrimination value of binary classification task, and converts it into 

probability through sigmoid function. 

3.2. Reinforcement learning 

3.2.1. Complete process 

This experiment realized automatic parameter adjustment mainly through reinforcement learning 

environment module, agent module, and model training module. The specific process is shown in 

Figure 3. 

 

Figure 3: Reinforcement training process (picture credit: original) 
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3.2.2. Environment construction 

In the construction of reinforcement learning environment, the core goal is to optimize the accuracy 

of the model in emotion recognition tasks by dynamically adjusting the hyper parameters of the deep 

learning model. The environment defines the state space, action space, and reward mechanism, and 

works with PPO algorithm or DDPG algorithm. 

The state space is composed of hyperparameters, specifically including learning rate (LR), dropout 

probability (dropout_prob) and batch_size, which are encoded into three-dimensional vectors by 

normalization. This design enables the agent to perceive the characteristics of the current parameter 

combination and provide the basis for its decision. The mathematical expression of the state vector is 

shown in formula (2). 

𝑣 = [𝑙𝑟 , 𝑑𝑟𝑜𝑝𝑜𝑢𝑡_𝑝𝑟𝑜𝑏 , 𝑏𝑎𝑡𝑐h_𝑠𝑖𝑧𝑒] (2) 

Among them, the value range of dropout probability and batch size is dynamically mapped to the 

preset interval through sigmoid function. (in this experiment, the dropout probability is 0.2 – 0.5, and 

the batch size is 64 – 128) 

In the action space, because this experiment only optimizes the dropout probability and batch size, 

the PPO environment will generate two-dimensional continuous action vectors through the agent, 

adjust the dropout probability in the first dimension, and adjust the batch size in the second dimension. 

Through nonlinear mapping, the action value is converted into actual parameters. The batch size 

adjustment formula (3) is as follows. 

𝑏𝑎𝑡𝑐h_𝑠𝑖𝑧𝑒 = 𝑏𝑎𝑡𝑐h_𝑚𝑖𝑛 × (
𝑏𝑎𝑡𝑐ℎ_𝑚𝑎𝑥

𝑏𝑎𝑡𝑐ℎ_𝑚𝑖𝑛
)

𝜎(𝑥)

(3) 

In the formula, σ(x) is a Sigmoid function, batch_max and batch_min are the upper and lower 

limits of the batch size range set in advance. This mechanism ensures the smooth adjustment of 

movement and avoids the instability of training caused by parameter mutation. 

Unlike PPO, the DDPG environment maps the continuous action values (range [-1,1]) output by 

the agent directly to the preset hyperparameter range (Dropout probability 0.2-0.5, batch size 64-128) 

through a linear scaling function. The specific formula (4) is as follows. 

𝑝𝑎𝑟𝑎𝑚 = min_v𝑎𝑙 +
𝑎𝑐𝑡𝑖𝑜𝑛 + 1

2
× (max_𝑣𝑎𝑙 − min_𝑣𝑎𝑙) (4) 

Where param is the final calculated parameter value, max_val and min_val are the upper and lower 

limits of the parameter value range respectively, and action refers to the action value output by the 

reinforcement learning agent, usually standardized to the range of [-1,1]. 

Next, the construction process of the reward mechanism will be explained. The reward section 

consists of three parts, with the most important being the accuracy improvement reward (𝑟𝑎𝑐𝑐). If the 

accuracy of the current training cycle model exceeds the historical best value, a positive reward will 

be given and multiplied by a coefficient of 20 to amplify the incentive signal of the accuracy change 

and accelerate the convergence of the strategy. The specific reward formula (5) is as follows. 

𝑟𝑎𝑐𝑐 = 20 × (𝑎𝑐𝑐𝑡 − 𝑎𝑐𝑐𝑏𝑒𝑠𝑡) (5) 

Where 𝑎𝑐𝑐𝑡 is the accuracy obtained in the current round, 𝑎𝑐𝑐𝑏𝑒𝑠𝑡 is the best accuracy in historical 

rounds. 

Then is the exploration reward (𝑟𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦). In order to avoid the agent falling into local optimum, 

the standard deviation of dropout probability (𝜎𝑑𝑟𝑜𝑝𝑜𝑢𝑡) is introduced into the reward function to test 

the diversity of parameters, see formula (6) for details. 
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𝑟𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = 0.1 × 𝜎𝑑𝑟𝑜𝑝𝑜𝑢𝑡 (6) 

This reward encourages agents to explore different parameter combinations to enhance the 

robustness of the strategy. 

Then there is breakthrough reward (𝑟𝑏𝑟𝑒𝑎𝑘𝑡ℎ𝑟𝑜𝑢𝑔ℎ). Because the accuracy rate will rise and stagnate 

in the experiment, that is, causing a periodic threshold. Therefore, this incentive is designed to 

encourage agents to break the threshold, as shown in formula (7). 

𝑟𝑏𝑟𝑒𝑎𝑘𝑡ℎ𝑟𝑜𝑢𝑔ℎ = 0.5 × (𝑎𝑐𝑐𝑡 − 𝑎𝑐𝑐𝑠𝑡𝑎𝑠𝑖𝑠) (7) 

Where 𝑎𝑐𝑐𝑡 refers to the accuracy of the current episode, 𝑎𝑐𝑐𝑠𝑡𝑎𝑠𝑖𝑠 refers to the periodic threshold. 

Finally, the total reward is the weighted sum of the above components, and the calculation method 

is shown in formula (8). 

𝑟𝑡𝑜𝑡𝑎𝑙 = 𝑟𝑎𝑐𝑐 + 𝑟𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 + 𝑟𝑏𝑟𝑒𝑎𝑘𝑡ℎ𝑟𝑜𝑢𝑔ℎ (8) 

3.2.3. PPO agent 

PPO agent realizes strategy optimization through actor critical framework, which is mainly composed 

of an actor network, critical network and experience playback buffer. 

In the actor network, the environmental parameters of the current state will be input. Then, the 

network generates a mean and standard deviation, and then samples from the Gaussian distribution 

as shown in formula (9). 

𝑎~𝑁(𝜇, 𝜎2) (9) 

If the current state (𝑠𝑡) is given, 𝜇 and 𝜎 will be output by the Actor network, where 𝜇(𝑠𝑡) refers 

to the mean value of the output and 𝜎(𝑠𝑡) refers to the standard deviation of the output. Finally, a 

continuous action (𝑎) will be generated. 

The input information accepted in the critical network is the same as that of the actor network. At 

the output layer, the network will first predict the possible rewards of the current state 

(hyperparameter combination) and output the corresponding state value. 

The output results of the actor critical framework will be stored in the experience buffer for 

subsequent policy updates. The track data stored includes status, action, reward, logarithmic 

probability, status value, and termination flag. 

Finally, the framework uses Adam optimizer to balance the stability and exploratory of the strategy 

update by combining the learning rate (0.0005), shear ratio (0.2), entropy regularization coefficient 

(0.2) and other parameters. 

3.2.4. DDPG agent 

The main differences between DDPG agent and PPO agent lie in the action generation mechanism, 

network architecture and update strategy. However, there are still many similarities between them. 

The implementation method of DDPG agent will be briefly introduced in the following. 

The action generation mechanism of DDPG agent adopts deterministic strategy. The actor network 

directly outputs the continuous action value, and then explores by adding Gaussian noise. The noise 

decays with training, and gradually reduces the randomness to balance exploration and utilization. 

In terms of network architecture, DDPG uses dual target networks, one is actor critical online 

networks, and the other is a target networks. Through soft update, the two networks gradually 

synchronize parameters, as shown in formula (10). 

𝜃𝑡𝑎𝑟𝑔𝑒𝑡 = 𝜏𝜃𝑜𝑛𝑙𝑖𝑛𝑒 + (1 − 𝜏)𝜃𝑡𝑎𝑟𝑔𝑒𝑡 (10) 
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Where 𝜃𝑡𝑎𝑟𝑔𝑒𝑡  and 𝜃𝑜𝑛𝑙𝑖𝑛𝑒  are the parameter values of target network and online network 

respectively, 𝜏 is the soft update factor, which is set to 0.005 in the experiment. 

Finally, the critical network part obtains the target Q value calculated by the target network by 

minimizing the timing difference error update strategy, and the actor network part performs the action 

of maximizing the target Q value predicted by the critical. 

3.2.5. RL training 

The training process of reinforcement learning is mainly divided into initialization and training 

models with dynamic parameters. Next, take the training process of PPO as an example. 

First import the created reinforcement learning environment (3.2.2) and PPO agent (3.2.3) for 

initialization, then import the YAML configuration file (4.1) for initialization of hyperparameters. 

Then, in each episode, the agent generates action vectors according to the current state 

(hyperparameter configuration) and maps the actions to specific parameter values. Then, the dynamic 

parameters are imported into the CNN training function to perform 180 rounds of supervised learning. 

Finally, the accuracy of the validation set is returned as environmental feedback. Among them, the 

training episodes of reinforcement learning are set to 15 times, which can ensure that the parameter 

combination can be adjusted to the optimal to a certain extent. 

4. Result analysis 

4.1. Initial parameter configuration 

In the basic CNN experiment, the hyperparameters and training settings required for deep learning 

are uniformly managed through YAML configuration files. After the configuration file is parsed by 

the YAML module, the parameters are dynamically injected into the data loading, model construction 

and optimizer initialization process to ensure the repeatability of the experiment and the traceability 

of the parameters. 

In the automatic parameter adjustment method of reinforcement learning, in order to make the 

basic deep learning form a control experiment, the initialization parameters of the first episode are 

the same as those of the basic CNN experiment. The agent added will automatically adjust the two 

important parameters of dropout probability and batch size in the configuration file in the subsequent 

episodes, and the other hyperparameters will remain unchanged in each experiment. The initial 

configuration information is shown in Table 1. 

Table 1: Initial configuration 

Classification 

type 

Dropout 

prob 

Batch 

size 

Train-test 

split 
Rounds 

Learning 

rate 
momentum seed 

arousal 0.4 64 1180:100 180 0.0015 0.9 12 
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4.2. Result 

 

Figure 5: Trend of CNN’s accuracy (picture credit: original) 

As shown in Figure 5, when the dropout probability is 0.2 to 0.4, the batch size is 64, and the learning 

rate is 0.0015, it is found that the recognition accuracy of basic CNN is about 66% to 69% after 

repeated training, and the highest accuracy is usually obtained at the 150th timestep. Due to the small 

number of samples in the test set, the accuracy obtained fluctuates greatly, but it still shows an overall 

upward trend in the first 150 timesteps. 

 

Figure 6: Trends of CNN’s accuracy after applying PPO/DDPG (picture credit: original) 

As shown in Figure 6, both PPO and DDPG algorithms can effectively find the combination of 

hyperparameters that enable CNN model to obtain higher accuracy, and the result is about 71%. In 

addition, DDPG can use fewer timesteps to achieve the highest accuracy of CNN. 
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Figure 7: Trends of batch size after applying PPO/DDPG (picture credit: original) 

 

Figure 8: Trends of dropout prob after applying PPO/DDPG (picture credit: original) 

According to Figure 7 and Figure 8, it can be seen that the agent has explored a variety of parameter 

combinations, and the final result shows that the batch size has been appropriately increased, while 

the dropout prob has been appropriately reduced, so that more information can be processed and more 

EEG signal features can be retained in a single iteration of deep learning. However, there are still 

potential risks such as overfitting. Table 2 shows the final results more clearly. 

Table 2: Final result comparison 

 
Best 

accuracy 

Batch 

size(initial) 

Dropout 

prob(initial) 

Batch 

size(final) 

Dropout 

prob(final) 

Episodes 

taken to 

the best 

CNN 69% 64 0.4 64 0.4  

PPO+CNN 71% 64 0.4 110 0.235 7 

DDPG+CNN 71% 64 0.4 75 0.351 5 

Proceedings of  CONF-SEML 2025 Symposium: Machine Learning Theory and Applications 
DOI:  10.54254/2755-2721/158/2025.TJ23292 

57 



 

 

5. Conclusions 

In this experiment, a new parameter adjustment method for deep learning is proposed, and the 

effectiveness of this method is verified based on the emotion classification problem, and the following 

conclusions are drawn. First, finding the optimal parameters through reinforcement learning methods 

such as PPO and DDPG effectively solves the problem of lengthy time and large amount of 

computational power in ordinary optimization. Second, the optimal accuracy of the CNN model in 

the experiment is about 71%. Third, compared with PPO, DDPG may converge to the best result 

faster. 

Because the CNN model in this experiment receives relatively few parameter values, that is, the 

action vector dimension generated by the agent is low, which is not suitable for more complex 

networks and tasks. In the future, this method needs to be tested on more models and data sets. In 

addition, we should also explore the optimization method of generating higher dimensional motion 

vectors through agents, which may require more improvements to the current reward mechanism, or 

try more reinforcement learning algorithms. Finally, the improvement methods include but are not 

limited to: modifying the split ratio of the data set, increasing the timesteps of deep learning, 

increasing the number of training episodes of reinforcement learning, and dynamically adjusting the 

learning rate of reinforcement learning by using the cosine annealing learning rate. Thus, the method 

proposed in this paper has a huge development space, and also has a great help to improve the 

efficiency of deep learning. 
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