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Abstract: Reinforcement Learning (RL), as an essential branch of machine learning, has 

garnered significant attention due to its outstanding performance in complex decision-making 

tasks and dynamic environments, exemplified by notable achievements such as AlphaGo and 

DeepSeek in recent years. To provide researchers with a comprehensive perspective of 

current developments in this area, this paper systematically reviews RL from four distinct 

perspectives: fundamental theoretical frameworks, practical applications, existing limitations, 

and future outlook. Initially, core concepts and classical algorithms including Q-learning, 

SARSA, and Temporal Difference (TD) learning are clearly introduced, establishing a solid 

theoretical foundation. Then, practical implementations of RL are elaborated within three 

representative fields: path planning, voltage control and game theory, highlighting their 

significance and effectiveness through literature analysis. Moreover, this paper critically 

analyzes the limitations of current RL techniques, such as low sample efficiency, unstable 

training processes, and insufficient generalization. Finally, potential research directions, 

including hybrid learning paradigms and multi-agent collaborations, are proposed to inspire 

future advancements. The insights provided in this review aim to stimulate further theoretical 

innovation and practical breakthroughs in reinforcement learning. 

Keywords: Reinforcement Learning, Path Planning, Voltage Control, Game Theory, 

Limitations. 

1. Introduction 

With the quick advancement of artificial intelligence technologies in recent years, reinforcement 

learning, a crucial area in the machine learning, has progressively emerged as a prominent domain of 

inquiry and application. In particular, in milestone events such as AlphaGo defeating the human Go 

champion (2016), OpenAI Five defeating the human team in the DOTA2 game (2018-2019), Chinese 

AI lab DeepSeek releasing the R1 inference model (2025), reinforcement learning has demonstrated 

excellent decision-making and optimization capabilities, which has greatly promoted the attention of 

academia and industry to its theory and practice. Reinforcement learning learns the optimal strategy 

through the interaction between the agent and the environment in the process of trial and error, 

providing a powerful tool for solving complex problems with high dimensions, dynamics, and 

uncertainty. 

Reinforcement learning not only shows well performance in traditional fields such as game theory, 

robot control, and autonomous driving, but also has achieved initial application results in emerging 

fields such as financial transactions, personalized recommendations, and bioinformatics. However, 
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reinforcement learning still faces challenges such as low sample efficiency, unstable training, and 

weak generalization ability. How to build a more stable bridge between theory and practice is still an 

important topic of current research. 

Most of the existing review papers on reinforcement learning focus on the latest cutting-edge 

theories or are limited to a certain field, lacking the introduction of basic theories and the diversity of 

the field. This article aims to systematically review the current status and development trends of 

reinforcement learning and focus on the following four aspects: first, an overview of the basic 

theoretical framework and main algorithms of reinforcement learning; second, an exploration of the 

application practice of reinforcement learning in the real world, including path planning, voltage 

control and game theory; third, an analysis of the key challenges and limitations of current 

reinforcement learning research and applications; and fourth, an outlook on the future development 

direction and potential breakthroughs of reinforcement learning. Through the above analysis, this 

article aims to offer readers a comprehensive and systematic perspective on reinforcement learning 

research, promoting the integrated development of theory and application. 

2. Reinforcement learning 

2.1. The basic of reinforcement learning 

Reinforcement learning is the process of learning the mapping from environmental states to actions. 

The objective of reinforcement learning is to discover a behavior strategy that maximizes a numerical 

reward signal. There are currently two primary approaches to solving problems in reinforcement 

learning. The first approach involves searching for the optimal behavior within the agent's behavior 

space, typically achieved using genetic algorithms and other search techniques. In the second way, 

the utility function value of an activity in a certain environmental condition is estimated using 

statistical approaches and dynamic programming methods.The agent's interactions with the 

environment may be explained by the conventional reinforcement-learning paradigm depicted in 

Figure 1. Through its behaviors and the environment's input, an agent in the model engages with its 

surroundings. The agent will receive input i, or some indicator of the present condition of the 

environment, at each stage of the interaction. Based on a few techniques, the agent will then select an 

action, which will produce the outcome. Through a value-state function or other transitions, the action 

will alter the state of the environment, and the environment will respond with feedback in the form 

of a scalar signal reinforcement signal r. The action that tends to raise the total value of the 

reinforcement signal over time will be selected by the agent from the collection of behaviors B. With 

the help of a number of algorithms, the agent may repeat this phase through trial and error.  

Formally, the model is composed of a discrete set of agent actions A, a discrete set of environment 

states S, and a set of scalar reinforcement signals, usually {0,1} or other real values [1]. 

Finding a method that directs the agent in choosing the best course of action to optimize the reward 

obtained from the environment is the aim of reinforcement learning. The rewards in the majority of 

puzzles, however, consist of both immediate and delayed reward values. Therefore, in order to 

estimate the ideal behavior in the future, an objective function must be defined. This objective 

function is typically expressed using the state value function or state-action value function. The 

function forms are as follows. 

 Vp(st)  =  ∑ γt ∞
t=0 rt,   0 < γ ≤ 1  (1) 

 Vp(st)  =  ∑ rt
h
t=0   (2) 

 Vp(st)  =  lim
h→∞

(
1

h
∑ rt

h
t=0 )  (3) 
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Where γ  is the discount factor, rt  is the reward values received from the environment after 

translating the agent’s state from st to st+1. Formula (1) is infinite-horizon discounted model, which 

takes long-term reward of agent into account accumulates reward with discounted factor in the infinite 

steps. Formula (2) is finite-horizon model, which only considers the reward in the next h steps. 

Formula  (3) is average-reward model, which takes average reward in the long-term into 

consideration. Obviously, if the objective function can be fixed, then the agents can determine the 

optimal behavior strategy under this formula: 

 p∗  =  argpmaxVp(st),     ∀s ∈ S  (4) 

 

Figure 1: The standard reinforcement-learning model (picture credit: original) 

Problems with delayed reinforcement are typically formalized using the framework of Markov 

Decision Processes (MDPs) [1,2]. A five-tuple M= 〈S, A, R, T, γ〉, where S is the finite set of states, A 

is the finite set of actions, R : S × A →  Real number is the reward function, T ∶  A × S →  P(S) is the 

transition function, P(S) is a probability distribution over the set S and γ is the discount factor, can 

be used to describe MDPs. R(s, a) is the reward function that denotes the value of the immediate 

reward after the agent takes the action an in the state s. T(s, a, s,) is the probability transfer function, 

which represents the probability that the state s translates to the state s, when agent takes the action 

a. 

In essence, MDPs is a decision process in the probability and reward of the transition from the 

current state to the next state only depend on the current state and the action chosen in the decision. 

It is not related to the historical states and actions. If it is possible to clearly determine the probability 

transfer function T and the reward function R, then the optimal strategy can be found by Dynamic 

Programming (DP). The two main ideas of DP, policy iteration and value iteration, are proposed by 

Ronald A Howard and Richard Bellman respectively. However, reinforcement learning focuses on 

the case that the function T and function R is not clear. In this case, the usual method is to use iteration 

techniques to adjust the estimated value of the value function in the current state and next step [3]. 

Consider objective function (1), the definition of optimal value function is: 

 V∗  =  maxa (R(s, a) + γ ∑ T(s, a, s,) 
s′∈S V∗(S∗)) , ∀s ∈ S  (5) 

The equation: 
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 V(s) =  (1 − α)V(s) + α(R(s, a) + γV(s,))  (6) 

is a basic equation that many reinforcement algorithms will modify appropriately based on learning 

rate and convergence speed [3]. 

2.2. The typical reinforcement learning algorithm 

If the agent does not need to learn the reward function and probability transfer function in the MDP 

model, this method is called model-free. On the contrary, if it is necessary to learn the knowledge of 

a model, it is called model-based. 

2.2.1. TD algorithm 

The simplest method in reinforcement learning is called temporal difference (TD) learning. It makes 

use of dynamic programming concepts and Monte Carlo techniques. On the one hand, it doesn't 

require a model and can learn from the agent's expertise. However, like dynamic programming, it 

makes adjustments to estimations depending in part on other estimates [4]. 

The simplest TD algorithm is  algorithm, which was proposed by Sutton in 1988. It uses the update 

rule:  

 V(s)  =  V(s) + α(r + γV(s,) − V(s))  (7) 

Where α is a constant learning rate and it is guaranteed to make optimal value function converge. 

The key idea of TD(0) is that it updates the estimated value of the adjacent state at each step by 

iteration. The TD(0) algorithm's slow convergence speed, however, is a drawback because it only 

looks forward in one step when modifying value estimates. The more efficient way is looking 

arbitrary steps back when the agent gets an immediate reward, which is TD(λ) algorithm. The TD(λ) 

rule mentioned above is comparable to the broader TD (0) rule: 

 V(s)  =  V(s) + α(r + γV(s,) − V(s))e(s)  (8) 

Where 𝑒(𝑠) is the eligibility of each state s. It can be calculated by follow rules: 

 e(s)  =  ∑ (λγ)t−kδs,sk

t
k=1 , where δs,sk

= {
1 if s = sk

    0 otherwise
  (9) 

 e(s)  =  {
  γλe(s) + 1 if s = current stete

 γλe(s) otherwise                            
  (10) 

From equation (9), if a state s is visited for many times, then the eligibility of s will be more and 

its contribution for the reward is greater. Equation (10) is a better version. 

2.2.2. Q-learning 

In 1992, Watkins presented the model-free reinforcement learning method known as Q-learning. It is 

also called off-policy TD. It uses rewards for state-action pairs and  𝑄∗ (𝑠, 𝑎) instead of status reward  

𝑉(𝑠)  in TD learning.  𝑄∗ (𝑠, 𝑎) can be written recursively: 

 Q∗(s, a)  = R(s, a) + γ ∑ T(s, a, s,) 
s′∈S maxa,  Q∗(s,, a,)  (11) 

Where Q∗(s, a) denotes the optimal sum of discount reward when the agent takes action in the state 

s. In the Q-learning, the agent will choose optimal action by using ε − greedy strategy[4] and get a 

series of tuples like 〈s, a, s,, a,〉 as experience knowledge. Then the agent will modify the Q value 

based on this rule: 
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 Q(s, a)  = Q(s, a) + α(r , + γmaxa,  Q(s,, a,) − Q(s, a))  (12) 

Like the TD(λ) algorithm, Q-Learning can also be expanded to update more steps than previously. 

2.2.3. SARSA 

In 1994, Rummery and Niranjan proposed the model-based SARSA algorithm. Another name for it 

is on-policy TD learning. It iterates using the Q value, just like Q-learning. The rules determine how 

it updates: 

 Q(s, a)  = Q(s, a) + α(r , + γQ(s,, a,) − Q(s, a))  (13) 

The difference is that SARSA uses a practical Q value instead of the max value of the value 

function. At each step, the agent determines the action based on the current Q value, which means 

that it is an on-policy TD learning. 

3. Reinforcement learning application 

3.1. Path planning 

For autonomous mobile devices like robots, unmanned vehicles, and drones, path planning is the 

process of determining the best or most efficient route from a starting point to a destination within a 

given environment. It is essential to domains like disaster robotics, military mission planning, and 

self-driving car navigation.  

Minh et al. used a deep neural network to perform value-based reinforcement learning function 

estimation, which is called a deep Q-network (DQN). DQN first solved the key problems between Q-

learning and neural networks and made reinforcement learning suitable for path learning [5]. Ji et al. 

utilized a Neural-Network-Driven Prediction model (NDR), which employed its guidelines and 

regional predictions as prior knowledge to assist Q-learning in achieving higher accuracy and faster 

convergence speed. It provides an effective method for mobile robot path planning [6]. The NDR-QL 

method diagram is shown in Figure 2. Pan et al. proposed an improving Q-learning method by 

combining the Radial Basis Function Neural Network (RBF) with Q-learning, which is called the 

RBF-Q network [7]. The structure of the RBF-Q network is shown in Figure 3. It not only uses the 

RBF network to approximate the action-value function of the Q-learning algorithm, but also expands 

action sets of robots based on dynamically adjusting. It helps agents to find a shorter path in fewer 

training rounds. 

 

Figure 2: The diagram of the NDR-QL method [8] 
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Figure 3: The structure of the RBF-Q network [9] 

Besides Q-learning, there are also other reinforcement learning applications. Tai et al. focused on 

developing a mapless motion planner based on deep deterministic policy gradients (DDPG) which is 

expanded into an asynchronous version. Compared with traditional DDPG, asynchronous deep 

deterministic policy gradients (ADDPG) decrease the iteration steps to get higher Q values and show 

better robustness in extremely complicated environments [8]. Zhang et al. proposed improving 

dueling double deep Q network (D3QN) for AUV path planning in the ocean [9]. They combined 

D3QN with the LSTM neural network and N-step temporal difference, which is called LN-D3QN. 

From their experiment, the LN-D3QN algorithm performs well in the presence of ocean current 

disturbances and can successfully avoid obstacles. It has excellent adaptability in dealing with 

complex ocean current environment path planning problems. 

3.2. Voltage control 

Voltage control is integral to daily electrical needs and safety. Reinforcement learning has been 

extensively and effectively applied in the field of voltage control for power systems. It is particularly 

adept at solving complex, nonlinear, and dynamic uncertainty problems that traditional voltage 

control methods struggle to address. However, with the increase in electrical needs, more reasonable 

power distribution and more precise power control require more effective algorithms [10]. 

Duan et al. proposed autonomous voltage control strategies (AVC) based on the deep Q-network 

(DQN) and deep deterministic policy gradients (DDPG). Different from DQN, DDPG is trained with 

an actor-critic-based approach [11]. It was found that DDPG performs well in controlling capacitor 

banks and transformer taps of active distribution networks to achieve dynamic voltage control. 

However, it needs more computation sources since it searches a wider ranging environment at the 

beginning. Zhang et al. proposed a data-driven distributed voltage control method using the advanced 

multi-agent deep reinforcement learning (MADRL) algorithm and spectrum clustering [12]. The 

technique divided the distribution system into many sub-networks according to the sensitivity of 

voltage and reactive power using unsupervised clustering. Every sub-network is represented as an 

adaptive agent in the context of a Markov game. Deep neural networks are used to approximate the 

policy and value functions in the training process using an improved Multi-Agent Deep 

Reinforcement Learning (MADRL) method. While choices are carried out in a distributed method 

utilizing just local knowledge, all agents receive centralized training to learn the best coordinated 

voltage regulation tactics. This approach has a reduced computation time, controls voltage variation, 

and has strong scalability and adaptation to large-scale systems. 
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3.3. Game theory 

A "game theory problem" refers to a decision-making scenario involving multiple decision-makers—

also known as participants or agents—whose actions impact one another. In such a problem, each 

participant aims to maximize their own benefits by selecting an optimal strategy, and their benefits 

frequently hinge on the choices made by others, thereby creating a strategic interactive relationship.  

In early times, reinforcement learning is applied for zero-sum game problems between two people, 

two teams, or multiple people. Great progress has been made in areas such as Go, games, Texas 

Hold'em, and Mahjong. For example, systems such as AlphaGo [13], OpenAI Five [14, 15], 

AlphaStar [16], DeepStack, and Suphx have reached or exceeded the level of human experts in these 

areas. Table 1 shows these applications. However, most of these applications focused on zero-sum 

game problems involving two people, two teams, or multiple people, while research on mixed game 

problems lacks substantial progress and breakthroughs [17]. In recent years, reinforcement learning 

has been applied to more game types in a wide range of fields.  Jin et al. suggested a bi-level motion 

planning system for intersections that is based on heuristic reinforcement learning and a reasoning 

game theory scheme. The main idea is to apply a recurrent neural network in the upper layer, while 

interactive games with many kinds of agents are made possible by Q networks that are selectively 

coupled in the lower layer [18]. Then, the self-agent can gradually update its estimations and derive 

corresponding actions from the historical joint state. It is found that this two-layer controller improves 

collision avoidance performance and reduces the passing time of the vehicles, which is helpful to 

vehicles to pass intersections effectively in the self-driving fields. Sun et al. proposed Curriculum 

Learning Multi-Agent Deep Deterministic Policy Gradient (CL-MADDPG), dividing the large-scale 

Unmanned Aerial Vehicle (UAV) cluster game confrontation task into several small-scale 

confrontation tasks [19]. It gradually increases the number of confrontational UAVs, so that the 

confrontation strategy of the UAV cluster is gradually improved on the original basis. It was found 

that the average reward value and the winning rate of the adversarial strategy trained using the CL-

MADDPG algorithm are significantly better than those of the unimproved multi-agent reinforcement 

learning algorithm. This method provides a new direction for the UAV training process which can 

help UAV to make a precise decision. 

Table 1: The reinforcement learning applications in the game 

System/Method 
Application 

Scenario 

Reinforcement Learning 

Method 
Game Type 

AlphaGo/AlphaZero Go, Chess 
Monte Carlo Tree Search 

+ Policy/Value Network 
Zero-sum game 

OpenAI Five Dota2 
Proximal Policy 

Optimization (PPO) 

Muti-agent 

confrontation game 

AlphaStar StarCraftII MARL + PPO 
Muti-agent complex 

game 

DeepStack 
Heads-Up No-limit 

Texas Hold’em 

Deep Reinforcement 

Learning (DRL) 

Zero-sum in complete 

information game 

Suphx Chinese Mahjong 
Deep Q network 

(DQN)/Actor-Critic 

Muti-player game 

(incomplete 

information) 
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4. Limitation and future outlook 

While reinforcement learning has achieved some success in research and application, it remains 

fundamentally limited to ideal, highly structured experimental data within simulated environments. 

Reinforcement learning models perform well in the training environment but often perform poorly 

and generalize poorly to slightly different environments. For instance, in path planning, a trained 

strategy might only be effective under a specific map or a particular obstacle layout; in voltage control, 

the model may not be able to adapt to various load fluctuation scenarios; and in gaming, a highly 

confrontational strategy can often be easily overcome by new tactics. Moreover, other limitations 

such as high training costs, low sample efficiency, poor explanatory power, and limited real-world 

deployment also persist. To advance reinforcement learning towards general artificial intelligence, 

research and application in reinforcement learning should focus on the following areas: 

The first is focusing on transfer learning and meta-learning to enhance reinforcement learning 

adaptability in new environments. For instance, in path planning, researchers can leverage prior 

knowledge to train models that quickly adapt to new tasks, subsequently developing general strategies 

applicable to various maps and dynamic obstacles. 

The second is combining the hybrid training mechanism of the simulation environment (simulator) 

with real data, the fusion method of model predictive control (MPC) and reinforcement learning, as 

well as model-based RL. It can help agents improve sample utilization and decrease the training 

interactions with the environment, which improves training efficiency. In tasks such as voltage 

control, workers can obtain historical operating data from sensors, and then train a power grid 

environment model based on this data. Finally, they train reinforcement learning strategies offline in 

the model and deploy them to the actual system. 

The third is introducing the explainable artificial intelligence (XAI) method and safe constraint 

reinforcement learning (Safe RL). They can provide visualization and decision logic tracking for the 

reinforcement learning model and improve stability and credibility in key scenarios like game 

problems. 

 The last is closely integrating with traditional optimization algorithms, such as linear 

programming and control theory, to form a "hybrid intelligent strategy" that leverages the advantages 

of both. For instance, in voltage control, the RL strategy can be coupled with a traditional PID 

controller. In path planning, RL is responsible for the global strategy and the traditional algorithm is 

used for local refinement. 

5. Conclusion 

Generally, despite the significant advancements reinforcement learning has made in areas such as 

path planning, voltage control, and game theory, it still encounters numerous challenges before it can 

be widely applied in practice. Future research is likely to concentrate on enhancing generalization, 

improving sample efficiency, boosting model interpretability and security, and fostering integration 

with traditional optimization techniques, as well as extending the capabilities for multi-agent systems 

and real-world deployment. As techniques develop, computing power increases, and cross-domain 

integration progresses, reinforcement learning is hopeful to demonstrate greater adaptability and 

decision-making prowess in increasingly complex and dynamic real-world settings. 

This paper has systematically reviewed reinforcement learning from multiple perspectives, 

including fundamental theoretical frameworks, related applications, existing limitations, and potential 

future directions. Initially, we elucidated core concepts and classical algorithms in reinforcement 

learning, such as Q-learning, SARSA, and Temporal Difference (TD) learning, establishing a 

theoretical foundation for subsequent discussions. Furthermore, practical applications of 

reinforcement learning are thoroughly examined across three representative domains: path planning, 
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voltage control, and game theory. Extensive literature reviews illustrated the capability of 

reinforcement learning to address complex decision-making tasks within uncertain and dynamic 

environments. 

Despite significant progress, reinforcement learning still encounters critical limitations, notably 

low sample efficiency, unstable convergence during training, and limited generalization ability. This 

review identifies these drawbacks and suggests prospective solutions, emphasizing promising 

research directions including the integration of reinforcement learning with supervised learning, 

meta-learning, and multi-agent cooperation techniques. 

In summary, this comprehensive overview serves as a reference for understanding current 

advancements and challenges in reinforcement learning, aiming to stimulate deeper theoretical 

investigations and innovative practical applications. 
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