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Abstract: This paper systematically investigates the co-evolution of adaptive optimization 

algorithms and deep learning architectures, analyzing their synergistic mechanisms across 

convolutional networks, recurrent models, generative adversarial networks, and Transformers. 

The author highlights how adaptive strategies—such as gradient balancing, momentum 

acceleration, and variance normalization—address domain-specific challenges in computer 

vision, natural language processing, and multimodal tasks. A comparative analysis reveals 

performance trade-offs and architectural constraints, emphasizing the critical role of adaptive 

optimizers in large-scale distributed training and privacy-preserving scenarios. Emerging 

challenges in dynamic sparse activation, hardware heterogeneity, and multi-objective 

convergence are rigorously examined. The study concludes by advocating for unified 

theoretical frameworks that reconcile algorithmic adaptability with systemic scalability, 

proposing future directions in automated tuning, lightweight deployment, and cross-modal 

optimization to advance AI robustness and efficiency. 

Keywords: Adaptive optimization algorithms, Co-evolution, Cross-modal learning, 

Hardware heterogeneity. 

1. Introduction 

The inherent complexity of deep learning models and the diversity of data distributions impose 

heightened demands on optimization algorithms. Specifically, the non-convex and non-smooth 

optimization landscapes characteristic of deep neural networks lack rigorous convergence guarantees, 

while conventional methods remain theoretically underdeveloped for these challenges. During back 

propagation, SGD often struggles with problems like gradient vanishing and being overly sensitive 

to small changes in input, which leads to slow updates of parameters in deep layers and too much 

bouncing around in gradient values. These inherent limitations substantially elevate the demands 

placed upon optimization algorithms [1]. Deep neural networks have been extensively employed in 

natural language processing, computer vision, and multimodal classification tasks, where parameter 

optimization fundamentally relies on solving non-convex stochastic problems [2]. Representative 

adaptive learning rate algorithms, including AdaGrad, RMSProp, Adam [3], and AMSGrad, have 

emerged as pivotal techniques for enhancing model performance through dynamic learning rate 

adjustment, momentum acceleration, variance reduction, and gradient update strategies. This work 
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presents a systematic analysis of the mechanistic roles played by adaptive optimization algorithms 

across diverse architectures (CNNs, RNNs, GANs, Transformers, etc.), elucidating their 

contributions to breakthroughs in training efficiency, generalization capability, and optimization 

stability, while outlining future research challenges. This research provides deeper insights into the 

adaptation mechanisms of optimization algorithms across architectures, offering theoretical support 

for improving training stability and efficiency, and practical guidance for future algorithm design and 

refinement. 

2. Adaptive optimization algorithms: theoretical foundations and core mechanisms 

The optimization of parameters in deep neural networks fundamentally constitutes a stochastic 

optimization challenge within high-dimensional non-convex spaces, with its core objective being the 

minimization of the empirical risk function [4]: 

𝑚𝑖𝑛
𝜃∈𝑅𝑑

1

𝑛
∑𝑓𝑖(𝜃)

𝑛

𝑖=1

(1) 

where θ refers to the parameter vector in the d-dimensional space Rd, 𝑓𝑖(𝜃) denotes the loss function 

associated with the i-th sample, and n is the total number of samples in the dataset. The goal is to find 

the optimal parameter vector θ that minimizes the average loss across all samples. This formulation 

encapsulates the essence of the optimization problem in deep learning, highlighting the complexity 

and dimensionality of the space in which the optimization must be performed. 

However, the fixed learning rate mechanism inherent to conventional gradient descent (SGD) 

demonstrates substantial limitations in addressing gradient heterogeneity and noise sensitivity. To 

overcome these challenges, adaptive optimization algorithms have emerged as critical methodologies 

for improving model training efficiency and stability through dynamic modeling of gradient statistics 

and reformulation of update rules. The theoretical foundation of these algorithms centers on two 

principal mechanisms:  Dynamic modeling of gradient statistics adjusts learning rates using 

historical gradient information. For instance, AdaGrad operates by accumulating a gradient squared 

matrix[5]: 

𝐺𝑡 =∑𝑔τ

𝑡

τ=1

⊙𝑔𝜏 (2) 

where, 𝐺𝑡  refers to the accumulated squared gradient matrix at iteration t, forming a diagonal 

approximation of second-order momentum for per-parameter learning rate adaptation, 𝑔τ denotes 

the stochastic gradient vector at iteration ii, computed from a randomly sampled mini-batch, ⊙ 

represents the element-wise Hadamard product operation, while t is the current optimization step 

index that governs historical gradient accumulation depth. Accordingly, the parameter updates 

undergo per-dimension scaling as follows: 

θ𝑡+1 = θ𝑡 − η ⋅ diag(𝐺𝑡 + ϵ𝐼)−1 ⊙𝑔𝑡 (3) 

where 𝐺𝑡 is the sum of squared gradients up to time t, η is the learning rate, ϵ is a small value added 

for numerical stability, and ⊙ denotes the Hadamard product. This mechanism enables dimension-

wise scaling of parameter updates, automatically amplifying learning rates for sparsely activated 

features (with low gradient update frequencies) while attenuating rates for high-frequency update 

directions, thereby alleviating the heterogeneity inherent in parameter optimization. However, 

AdaGrad's monotonically accumulated second-order momentum may lead to premature learning rate 

decay [6]. To address this limitation, subsequent studies have introduced exponential moving average 
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(EMA) strategies, exemplified by RMSProp and. Adam [7]. The integration of momentum-driven 

acceleration [7] and variance-adaptive scaling further optimizes gradient dynamics. The Adam 

algorithm synthesizes first-order moments (capturing directional gradient memory) with second-

order moments (statistical estimates of gradient magnitudes [8]: 

𝑚�̂� = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 , 𝜈�̂� = 𝛽2𝜈𝑡−1 + (1 − 𝛽2)𝑔𝑡 ⊙𝑔𝑡 (4) 

where 𝛽1 and 𝛽2 are the decay rates for the first and second moments, respectively. Bias-corrected 

moments are then derived as:  

𝑚�̂� =
𝑚𝑡

1 − β1
𝑡   ,  𝑣�̂� =

𝑣𝑡
1 − β2

𝑡 (5) 

The parameter update rule combines these components: 

θ𝑡+1 = θ𝑡 − η ⋅
𝑚�̂�

√𝑣�̂� + ϵ
(6) 

where, η refers to the global learning rate controlling overall update magnitude, 𝑚�̂� denotes the 

bias-corrected first-moment estimate of gradients, 𝑣�̂� represents the bias-corrected second-moment 

estimate for gradient variance normalization, while ϵ  is a small constant (typically 10−810−8) 

preventing division-by-zero instability. 

This unified framework balances the retention of historical gradient trends (exploitation) and 

adaptation to instantaneous gradient statistics (exploration), achieving enhanced stability and 

convergence rates in non-convex optimization landscapes. The momentum term preserves historical 

gradient directions to expedite convergence, while the variance term suppresses stochastic noise 

fluctuations, with their coordinated interaction balancing the trade-off between exploration and 

exploitation efficiency. Theoretically, the performance guarantees of such algorithms can be 

rigorously quantified through dynamic regret upper bounds.  

∑𝑓𝑡(θ𝑡)

𝑇

𝑡=1

−∑𝑓𝑡(θ𝑡
∗)

𝑇

𝑡=1

≤ 𝑂(√𝑑𝑇 log 𝑇) (7) 

The cumulative loss deviation from the dynamic optimal policy is bounded by a sublinear function 

of the problem dimension d and the time horizon T[9]. 

Further, Adaptive optimization algorithms can be systematically categorized into three classes 

based on their design objectives:Gradient-statistic-based methods (e.g., AdaGrad, RMSProp) 

dynamically adjust learning rates by leveraging local gradient magnitudes[8];Momentum-integrated 

approaches (e.g., Adam, NAdam[10]) combine directional memory with adaptive scaling 

mechanisms;Theoretically refined variants (e.g., AMSGrad, AdamW) enhance robustness through 

constrained optimization or regularized updates. These algorithms exhibit distinct advantages across 

architectures such as CNNs and Transformers. For instance, Adam's momentum mechanism mitigates 

gradient vanishing in RNNs, while layer-wise adaptive strategies (e.g., LAMB) enable efficient large-

scale Transformer training [11]. 

The fundamental contribution of adaptive optimization lies in unifying data-driven dynamic 

modeling with theoretical guarantees, delivering efficient and stable solutions for non-convex 

optimization[3]. Moving forward, addressing the complexity of large-scale and multimodal training 

necessitates novel paradigms in distributed coordination and hardware-aware optimization to 

overcome high-dimensional challenges. 
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3. Co-evolution of adaptive optimization algorithms and core deep learning models 

The rapid advancement of deep learning has driven the increasing complexity of model architectures 

and the expansion of data scales, demanding higher requirements for optimization algorithms. As a 

core tool for training deep learning models, adaptive optimization algorithms have significantly 

enhanced training efficiency and model performance through synergistic co-evolution with key 

architectures. This chapter explores the mechanisms and profound impacts of adaptive optimization 

algorithms across convolutional neural networks (CNNs), recurrent neural networks (RNNs/LSTM), 

generative adversarial networks (GANs), and Transformer models. 

3.1. Convolutional Neural Networks (CNNs) 

CNNs, the cornerstone of computer vision, rely critically on adaptive optimization algorithms. While 

CNNs identify important features in images by looking at small areas, adaptive optimizers improve 

how well these features are learned by adjusting the learning process based on the data. First-order 

algorithms (e.g., SGD､RMSProp､Adam[3])dominate CNN training due to their computational 

superiority over second-order methods (e.g., ,Newton[12]､BFGS[13]). These algorithms navigate the 

high-dimensional solution space defined by loss functions, aligning with the complex tensor 

structures of CNNs. 

For instance, in ResNet training, Adam accelerates shallow feature convergence through 

parameter-level adaptive learning rate tuning, outperforming SGD in efficiency[14]. However, SGD 

often achieves superior generalization[15] in specific tasks due to its stable update trajectories, 

highlighting the trade-off between convergence speed and generalization. In multi-task scenarios, 

RMSProp mitigates gradient scale imbalance by independently modulating gradients across 

classification and regression branches, thereby boosting detection accuracy[16]. This synergy not 

only optimizes CNN training but also underpins their application in multi-task learning. As shown in 

Figure 1, CNNs consist of convolutional layers, pooling layers, and fully connected layers. These 

structural components interact closely with optimization dynamics, making the choice of optimizer 

critical to the success of deep convolutional models. 

 

Figure 1: Typical architecture of a Convolutional Neural Network (CNN) showing key functional 

layers and data flow 

3.2. Recurrent Neural Networks (RNNs/LSTM) 

RNNs and their variants (e.g., LSTM) excel in sequence modeling but face challenges like long-term 

dependency learning and vanishing gradients[17]. Adaptive optimizers address these issues 

effectively: AdaGrad alleviates gradient vanishing by accumulating historical gradients, improving 

LSTM performance in language modeling.[18] AdamW further stabilizes attention weight updates in 

machine translation, enhancing output quality. However, temporal dependencies in RNNs amplify 
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gradient noise due to biased second-moment estimates, necessitating gradient clipping for 

stability[19]. This co-evolution resolves RNN training bottlenecks and enables robust applications in 

NLP and time-series analysis. 

RNNs and their variants (e.g., LSTM) excel in sequence modeling but face challenges like long-

term dependency learning and vanishing gradients. (Figure Y provides a schematic representation of 

RNNs and LSTMs, emphasizing their recurrent structure and gating mechanisms that enable memory 

retention over long sequences.) 

Adaptive optimizers address these issues effectively: AdaGrad alleviates gradient vanishing by 

accumulating historical gradients, improving LSTM performance in language modeling. AdamW 

further stabilizes attention weight updates in machine translation, enhancing output quality. However, 

temporal dependencies in RNNs amplify gradient noise due to biased second-moment estimates, 

necessitating gradient clipping for stability. (As seen in Figure Y, recurrent connections in RNNs and 

gating mechanisms in LSTMs play a crucial role in handling sequential data, requiring specialized 

optimization techniques to ensure stable training.) 

This co-evolution resolves RNN training bottlenecks and enables robust applications in NLP and 

time-series analysis. 

As demonstrated in Figure 2, RNNs rely on recurrent units to maintain hidden states across time 

steps, while LSTMs incorporate gates to control the flow of information. These mechanisms are 

heavily influenced by the choice of optimization strategy. 

 

Figure 2: Architecture of RNNs and LSTMs showing input recurrence, hidden states, and memory 

gating mechanisms 

3.3. Generative Adversarial Networks (GANs) 

The adversarial nature of GANs poses unique optimization challenges.  As depicted in Figure 3, the 

core framework of GANs consists of a generator-discriminator dyad engaged in a minimax game—

the generator synthesizes counterfeit samples while the discriminator distinguishes them from real 

data. This dynamic equilibrium critically relies on optimization algorithms to coordinate conflicting 

gradient update directions between the two networks. Adaptive algorithms play a pivotal role here—

Adam prevents mode collapse by independently optimizing generator and discriminator networks[20], 

while RMSProp in Wasserstein GANs improves generation quality via dynamic learning rate 

scheduling. For example, AdamW in StyleGAN2 decouples weight decay, significantly improving 

the quality of generated images[21]. Notably, as shown in Figure 3, the discriminator’s feedback 

gradient (∇D) directly regulates the generator’s parameter adjustments (∇G), necessitating optimizers 

to maintain stable gradient propagation ratios between these adversarial components. Such 

innovations stabilize GAN training and expand their applications in image synthesis and style transfer. 
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Figure 3: Architecture of GANs illustrating adversarial training between the generator and 

discriminator with random noise input and synthetic output generation 

3.4. Transformer models 

The emergence of Transformer models has heralded a new era in deep learning, with adaptive 

optimization algorithms playing a pivotal role in this paradigm shift. As illustrated in Figure 4, the 

Transformer architecture comprises stacked encoder and decoder layers. Each encoder layer 

integrates multi-head attention mechanisms that project inputs into query, key, and value subspaces, 

followed by position-wise feed-forward networks (FFN) for nonlinear transformation. The decoder 

further incorporates masked multi-head attention to preserve autoregressive properties during 

sequence generation.  In large-scale pretraining tasks, AdamW significantly reduces the training time 

of BERT/GPT architectures by efficiently managing sparse gradients, thereby enhancing 

computational efficiency[18]. Furthermore, the LAMB optimizer enables distributed training for 

Vision Transformers (ViT), supporting their extension to ultra-large parameter configurations. Recent 

innovations, such as the Sophia optimizer, further improve convergence efficiency in massive models 

through second-order Hessian estimation. This co-evolution not only advances the application of 

Transformers in large-scale pretraining and multimodal tasks but also charts a strategic direction for 

the future evolution of deep learning technologies. 

The co-evolution of adaptive optimization algorithms and deep learning architectures remains a 

cornerstone of AI progress. From CNNs to Transformers, these algorithms dynamically address 

training challenges, balancing speed, stability, and generalization. The hierarchical structure of 

Transformers—with its alternating attention and FFN layers—demands optimizers capable of 

handling heterogeneous gradient distributions across submodules, a requirement met by layer-wise 

adaptive strategies like LAMB. Their synergy has propelled advancements in computer vision, NLP, 

and generative modeling while offering theoretical and practical insights for future research[22]. As 

deep learning evolves, adaptive optimizers will continue to underpin innovations, steering AI toward 

unprecedented frontiers. 

 

Figure 4: Architecture of transformers highlighting encoder-decoder stacks, multi-head attention 

layers, and masked attention mechanisms for sequential information propagation 

Proceedings of  CONF-SEML 2025 Symposium: Machine Learning Theory and Applications 
DOI:  10.54254/2755-2721/158/2025.TJ23299 

6 



 

 

4. Cross-domain applications and performance comparative analysis of adaptive 

optimization algorithms 

The efficacy of adaptive optimization algorithms is highly dependent on model architectures and task 

characteristics, and their application differences in heterogeneous scenarios can be elucidated through 

comparative analysis of representative cases. The table below summarizes the synergistic 

mechanisms between mainstream models and optimization strategies: 

Table 1: Comparative analysis of optimization strategies for deep learning architectures: methods, 

advantages, and challenges 

Model Type 
Representative 

Strategies 
Key Advantages Core Challenges 

CNNs 
SGD + Momentum + 

Cosine Annealing 

High generalization performance 

(e.g., ImageNet classification) 

Memory/GPU resource pressure from 

large parameter volumes 

RNNs 
Adam + Gradient 

Clipping 

Long-sequence modeling (e.g., 

language models, machine 

translation) 

Temporal dependency-induced second-

moment estimation bias 

GANs 
Adam (WGAN-GP 

framework) 

Dynamic equilibrium between 

generator-discriminator 

Hyperparameter sensitivity (e.g., precise 

control of learning rate ratios) 

Transformers AdamW / LAMB 
Sparse gradient efficiency and 

distributed training scalability 

O(n²) computational load in self-attention 

layers + high communication bandwidth 

demands 

 

In the field of computer vision, object detection models significantly enhance detection robustness 

in complex scenarios by dynamically modulating gradient update steps for multi-task loss functions 

through gradient balancing strategies [23]. For instance, architectures based on region proposal 

networks coordinate classification accuracy and localization errors via differentiated gradient scaling 

mechanisms. However, high-resolution image processing remains constrained by memory efficiency 

bottlenecks. In natural language processing, big pre-trained language models use low-rank optimizers 

(like AdaFactor) to reduce the size of the parameter update matrices, which helps ease memory usage. 

Nevertheless, sparse gradient-induced statistical deviations in low-resource language modeling tasks 

still hinder convergence stability. 

In multimodal learning scenarios, vision-language joint models leverage the hierarchical adaptive 

mechanisms of the LAMB optimizer to achieve balanced cross-modal feature optimization through 

gradient and parameter norm normalization. While such methods exhibit significant advantages in 

distributed training, gradient direction conflicts in multi-objective loss functions necessitate the 

introduction of competition-aware optimization strategies. In privacy-sensitive scenarios, federated 

learning frameworks utilize noise-robust optimizers (e.g., DP-AdamW) to compensate for gradient 

variance perturbations introduced by differential privacy mechanisms, maintaining model utility 

while controlling privacy leakage risks. However, communication efficiency in ultra-large-scale 

models still requires improvement. 

Current technical challenges are centered on asynchronous routing bias in dynamic sparse 

activation systems, multi-modal objective competition convergence, and optimization efficiency 

bottlenecks induced by hardware heterogeneity. Future research must focus on developing universal 

optimization frameworks that support dynamic computation graphs and mixed-precision training to 

address the complexity demands of cross-domain deployment for ultra-large-scale models. 
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5. Challenges and future directions 

While adaptive optimization algorithms remain instrumental in propelling advancements within deep 

learning, the technical constraints they confront in the epoch of ultra-large models have undergone 

profound transformations, giving rise to several cardinal challenges: 

A paramount difficulty resides in the harmonious optimization of dynamic sparse activation and 

heterogeneous computational resources. The dynamic sparse activation paradigm, characteristic of 

mixed expert systems architectures deployed in ultra-large language models (e.g., GPT-4, PaLM), 

invalidates conventional optimizers for global gradient statistics. Specifically, the asynchronous 

routing protocols inherent to expert networks precipitate systematic deviations in the second-moment 

estimations of Adam optimizers, necessitating the formulation of adaptive learning rate modulation 

mechanisms that incorporate localized routing awareness. 

Secondly, the antagonism among optimization objectives in multimodal tasks has surged to the 

forefront. Within vision-language fusion models, the loss functions pertaining to text generation and 

image reconstruction manifest intrinsic competitive dynamics[24], complicating the reconciliation of 

multi-objective convergence trajectories for extant optimization algorithms (a concern underscored 

at ICML 2024). 

Thirdly, the deterioration of optimization stability under privacy-preserving constraints has 

surfaced as a critical issue. In federated learning paradigms, the injection of noise mechanisms to 

ensure differential privacy amplifies gradient variance, precipitating high-frequency oscillations in 

adaptive optimization algorithms[25]. This predicament underscores the exigency for the 

development of noise-resilient parameter recalibration methodologies (epitomized by the DP-

AdamW proposal at CVPR 2024). 

Furthermore, the discrepancies in optimization efficiency engendered by hardware heterogeneity 

have intensified. In hybrid computational clusters integrating TPUs and GPUs, disparities in floating-

point precision and communication protocols engender substantial increases in gradient 

synchronization latencies. Conventional distributed optimization strategies falter in achieving cross-

device load equilibrium. Concomitantly, the disintegration of convergence during ultra-low-precision 

training has emerged as a formidable impediment to model lightweight deployment. Empirical 

evidence suggests that low-bit quantization drastically compromises the fidelity of second-moment 

estimations within Adam-type optimizers, thereby jeopardizing model performance[26]. This 

necessitates the urgent conception of error mitigation frameworks. These challenges not only demand 

paradigm-shifting innovations at the algorithmic stratum but also advocate for a fundamental re-

architecting of the optimization theory corpus to accommodate the escalating complexity of 

contemporary artificial intelligence models. 

6. Conclusion  

Adaptive optimization algorithms have emerged as a cornerstone in advancing deep learning by 

dynamically adapting to model architectures and data characteristics. Through their co-evolution with 

core frameworks like CNNs, Transformers, and GANs, these algorithms have significantly enhanced 

training efficiency, generalization capability, and stability across diverse domains. However, the era 

of ultra-large-scale models introduces unprecedented challenges: dynamic sparse activation in mixed 

expert systems disrupts gradient statistics, multimodal objective conflicts impede balanced 

convergence, privacy-preserving noise amplification destabilizes optimization trajectories, and 

hardware heterogeneity exacerbates computational inefficiencies. Addressing these challenges 

demands a paradigm shift toward unified theoretical frameworks that integrate dynamic computation 

graphs, noise-resilient parameterization, and hardware-aware distributed coordination. Future 

research must bridge theoretical rigor with engineering pragmatism, fostering innovations in 
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automated hyperparameter tuning, lightweight training protocols, and cross-modal optimization 

strategies. By harmonizing algorithmic adaptability with systemic scalability, adaptive optimization 

will remain pivotal in steering AI toward robust, efficient, and ethically grounded frontiers. 
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