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Abstract: This paper systematically analyzes multivariate methods for high-dimensional 

matrix computation and their optimization strategies for applications in finance. At the level 

of high-dimensional computation, it focuses on the technical characteristics of direct methods, 

iterative methods , and randomized algorithms , which reveal their efficiency gains in 

financial derivatives pricing, risk matrix modeling, and other scenarios. For serverless 

architecture, the study focuses on its core advantages of elastic scaling and on-demand billing, 

through parallel task slicing and cost optimization, while analyzing the limitations of its 

stateless design on the adaptation of iterative algorithms and the constraints of cold-start 

latency on high-frequency trading. In addition, the article delves into the special challenges 

of financial modeling, including the cubic complexity pressure of high-dimensional 

operations, real-time conflicts of missing data interpolation, and privacy compliance 

requirements, and discusses hybrid architectures (serverless with local GPU synergy) and 

middleware (Redis, AWS Step Functions) as the current transitional solutions for balancing 

efficiency and state. The research also addresses the challenges of nonlinear dynamic 

modeling and interpretability requirements for machine learning-driven models, providing a 

multidimensional analytical framework for technology adaptability. 
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1. Introduction 

In recent years, the digitization process of financial markets has accelerated, and the demand for high-

dimensional data processing has shown explosive growth [1]. Whether it is risk exposure calculation 

for investment portfolios or real-time covariance matrix updating in high-frequency trading, all of 

them need to handle 10,000-dimensional or even higher dimensional matrix operations. Such tasks 

impose stringent requirements on the scalability, cost-efficiency, and responsiveness of computing 

systems. However, traditional distributed frameworks (e.g., MPI- or Spark-based clusters) often 

suffer from idle clusters or delayed responses due to fixed node configurations and resource pre-

allocation mechanisms when dealing with unexpected loads. For example, during extreme market 

volatility, real-time adjustment of risk models needs to be completed within minutes, but traditional 

systems are often limited by expansion lag and high operation and maintenance costs, making it 

difficult to meet the agility requirements [2]. 

In this paper, Serverless Architecture, as an emerging cloud computing paradigm, has gradually 

entered the financial engineering research field. This architecture realizes the computing mode of 

“on-demand call, pay-as-you-go” by decomposing computing tasks into independent function units 
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and relying on the dynamic resource scheduling capability of the cloud platform. Its core advantages 

are: first, eliminating the burden of hardware operation and maintenance, users only need to focus on 

business logic; second, supporting millisecond elasticity expansion, can instantly respond to sudden 

load; third, through fine-grained billing model (such as AWS Lambda hundred milliseconds billing 

unit), significantly reduce the cost of small and medium-sized task computing. These characteristics 

make it show unique potential in financial high-frequency scenarios (e.g., real-time risk reassessment, 

algorithmic trading signal generation) [2]. 

Nevertheless, serverless architectures for financial applications still face multiple theoretical 

bottlenecks and practical challenges. First, its stateless design limits the execution efficiency of 

iterative algorithms (e.g., Jacobi method, conjugate gradient method), which rely on external storage 

systems (e.g., Redis or AWS Step Functions) for intermediate state sharing, thus introducing 

additional latency and complexity. Second, the cold-start latency (time consumed for the first function 

call) poses a hard constraint for microsecond high-frequency trading scenarios, and although 

technologies such as AWS SnapStart have reduced it to 50 ms, there is still a gap compared to 

dedicated hardware acceleration solutions. In addition, the sensitivity of financial data (e.g., customer 

privacy, transaction compliance) requires computational frameworks to have cross-platform security 

collaboration capabilities, while serverless architectures are still in the exploratory stage of integrating 

privacy computing technologies such as federated learning and homomorphic encryption. 

This paper explore multiple methods of high-dimensional matrix computation and their application 

optimization in the financial domain, including the technical characteristics and efficiency advantages 

of direct, iterative and randomized algorithms. It focuses on the advantages of serverless architectures 

in terms of elastic scaling and cost-effectiveness and their impact on high-frequency trading, while 

pointing out their limitations in state management. The article also discusses the challenges in 

financial modeling, such as computational complexity, real-time data processing and privacy issues, 

and proposes hybrid architectures and middleware as solutions. In addition, a multi-dimensional 

technology adaptation analysis framework is provided to address the challenges faced by machine 

learning models in terms of nonlinear dynamic modeling and inter pretability. 

2. Methodological research 

2.1. Overview of high-dimensional matrix computation methods 

High-dimensional matrix computation refers to the process of performing complex mathematical 

operations on large-scale matrices with a high number of dimensions. This method is widely used in 

various fields such as finance, machine learning, and scientific computing. In this section, this paper 

will provide an overview of different methods employed for high-dimensional matrix computation 

The reference study establishes a multi-layered optimization framework for linear system solving, 

integrating theoretical innovation with engineering practicality [3]. At the model construction level, 

Gaussian elimination with dynamic pivoting is employed to enhance numerical stability by adaptively 

selecting pivot elements, effectively mitigating rounding errors in ill-conditioned matrices.  Coupled 

with a block-based algorithmthat reorganizes memory access patterns, this approach achieves a 40% 

efficiency improvement in compute-intensive financial derivative pricing tasks, such as tridiagonal 

option models. For large-scale sparse systems, a novel Compressed Row Storage (CRS) architecture 

is introduced. Its three-tier indexing mechanism reduces storage complexity from O(n²) to O(nnz) 

(non-zero elements), synergizing with GPU-accelerated parallel computing to overcome memory 

bottlenecks in finite element analysis.  Empirical validation demonstrates the framework’s superiority.   

In risk modeling scenarios, the hybrid approach reduces iteration cycles by 75% and memory 

consumption by 60% compared to conventional solvers. For financial network topology analysis (e.g., 

systemic risk propagation in interbank networks), the GPU-accelerated CRS architecture achieves a 
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12x speedup over CPU-based implementations. This work signifies a paradigm shift in linear 

solvers—from isolated algorithm tuning to systemic architectural innovation—providing a scalable, 

hardware-aware solution for high-dimensional financial computations. Future directions include 

extending the framework to quantum-inspired algorithms and federated learning environments for 

privacy-preserving cross-institutional simulations.   

High-dimensional matrix computation methods vary in their approaches and applications. Direct 

methods provide reliable solutions but can be computationally expensive, while iterative methods 

offer computational efficiency at the expense of accuracy. Eigenvalue decomposition and singular 

value decomposition are powerful techniques widely used in various applications. Randomized 

algorithms, sparse matrix techniques, parallel computing, and distributed computing are all strategies 

employed to enhance computational efficiency in high-dimensional matrix computations. By 

understanding and utilizing these methods, researchers and practitioners can effectively perform 

complex computations on high-dimensional matrices and improve their respective domains. 

2.2. Serverless architecture in existing research 

2.2.1. Execution efficiency and cost optimization  

Serverless architectures demonstrate superior execution efficiency and cost optimization compared 

to traditional distributed systems like Spark and MPI for tasks that can be parallelized in bursts. For 

instance, multiplying a 10,000×10,000 dense matrix using AWS Lambda achieved a 2.85x speedup 

(42 seconds versus 120 seconds on Spark) by distributing the workload across 1,000 parallel functions 

[3]. This efficiency is driven by the elimination of resource provisioning delays and the use of sub-

second billing granularity: Lambda charged 0.18 for the task, while Sparkincurred0.18forthetask, 

while Spark incurred 2.10 due to idle cluster time. Similarly, Monte Carlo simulations for Value-at-

Risk calculations completed in 90 seconds with serverless, compared to 300 seconds on EC2 

autoscaling groups, underscoring the limitations of cold starts in traditional systems. Cost savings are 

particularly significant for large-scale workloads, such as stress testing 200 million financial scenarios. 

Serverless implementations (e.g., AWS Lambda) completed this in 8 hours at 12,500, where as 

on−premise Hadoop clusters required 72 hours with a total cost of ownership (TCO) of 12,500, 

including hardware depreciation and energy costs. These advantages extend to sparse matrix 

operations, where serverless-optimized storage formats reduced memory usage by 60% for 

50,000×50,000 covariance matrices, while MPI clusters wasted 15% of memory on redundant data 

replication [4]. However, serverless workflows face tradeoffs, such as data transfer overhead 

consuming 30% of runtime in sparse eigenvalue computations, which can only be partially mitigated 

through edge caching strategies. 

2.2.2. Advantages of elastic scalability  

The elastic scaling inherent in serverless architectures enables near-linear performance scaling for 

high-dimensional tasks, a critical advantage over static cluster-based systems. Doubling the size of a 

matrix operation—for example, from 10,000×10,000 to 20,000×20,000—simply doubles the number 

of Lambda invocations (2,000 functions) while maintaining consistent execution times (42 seconds). 

In contrast, traditional systems like Spark require manual cluster resizing, adding 10–15 minutes for 

node provisioning and configuration. Serverless platforms also avoid the concurrency limits of MPI 

or Spark, supporting up to 3,000 parallel functions per region on AWS Lambda, whereas MPI clusters 

are bottlenecked by fixed node counts (e.g., 100 nodes maximum). This scalability extends to 

memory-intensive tasks: a 50,000×50,000 sparse matrix stored in serverless-adapted compressed 

formats consumed 8 GB of memory versus 20 GB for dense storage, with Azure Functions achieving 

threefold faster convergence in eigenvalue calculations compared to MPI. However, iterative 
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algorithms like the Jacobi method remain challenging due to the stateless design of serverless 

architectures. Solutions such as Redis Cloud for shared residuals or AWS Step Functions for stateful 

workflows introduce 5–10% overhead but still outperform Hadoop’s 15% checkpointing penalty 

from HDFS writes. These capabilities make serverless ideal for unpredictable workloads, such as 

real-time risk rebalancing during market volatility spikes, where traditional systems struggle to 

dynamically reallocate resources. 

2.2.3. Challenges of delayed consistency and state management 

Despite their scalability advantages, serverless architectures face inherent latency inconsistencies and 

state management challenges [5]. Cold starts—initial function invocation delays of 500–2000 ms—

historically hindered real-time applications, but advancements like AWS SnapStart reduced this to 

50 ms by persisting execution environments. In high-frequency trading (HFT), serverless systems 

achieved 95th percentile latency of under 100 ms for covariance matrix updates, meeting industry 

benchmarks, while Spark Streaming lagged at 200–500 ms due to micro-batch processing. Fault 

tolerance further highlights serverless advantages: automatic retries (three attempts by default) 

ensured a 99.99% success rate for matrix operations, whereas MPI jobs often failed entirely if a single 

node crashed. However, serverless struggles with stateful iterative algorithms [6]. For example, 

federated learning workflows for credit risk models required homomorphic encryption and AWS Step 

Functions to coordinate gradient updates across 500 Lambda functions, adding 12% overhead but still 

achieving 99.2% accuracy comparable to centralized training. These tradeoffs underscore the nuanced 

applicability of serverless: it excels in short-lived, parallelizable tasks like matrix splits or scenario 

simulations but lags in long-running, stateful processes such as iterative solvers. Hybrid architectures, 

combining serverless for burst capacity and on-premise GPUs for persistent workloads, are emerging 

as a balanced solution. For instance, J.P. Morgan’s hybrid Value-at-Risk engine reduced operational 

costs by 65% while maintaining sub-second latency for risk re-calibration [7]. 

The articles explore distinct strategies for optimizing cold start issues from perspectives of 

technical implementation, industry application, and distributed computing frameworks [8,9,10]. The 

AWS documentation details the Lambda SnapStart technology, which reduces Java function cold 

starts to double-digit milliseconds by pre-initializing functions and creating encrypted snapshots 

during version releases, achieving up to 10x performance improvement at no extra cost, though 

limited to x86 architecture and Java 11 runtime [8]. In contrast, Smith’s financial engineering study 

focuses on serverless computing in financial simulations, proposing pre-provisioned concurrency and 

code-level warm-up techniques (e.g., initializing database connections or simulating requests) to 

mitigate cold starts, albeit requiring trade-offs in code complexity and risks of downstream state 

contamination [9]. Both technical articles emphasize the effectiveness of warm-up mechanisms, but 

differ in approach: ID8’s SnapStart offers a platform-level automated solution, whereas reference’s 

manual developer-driven warm-up prioritizes high-concurrency financial scenarios [9]. The federated 

learning review, while not directly addressing cold starts, links distributed computing efficiency 

challenges to potential cold start optimizations—for instance, SnapStart-like snapshotting could 

reduce task latency in edge node deployments for federated learning (Figure 1) [10]. However, the 

method primarily emphasizes communication security and data heterogeneity challenges, omitting 

technical implementation details.  
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Figure 1: The lifecycle of an FL-trained model and the various actors in afederated learning system 

[10] 

Table 1: A comprehensive comparison of various high-dimensional matrix computation methods 

Methodology 
EXECUTION 

TIME(s) 

Memory 

usage 
Cost 

Speedup 

Factor 

Efficiency 

Improvement 

Gaussian 

Elimination(CPU) 
180 8.1 3.52 1.1 Base 

Gaussian Elimination 

with GPU 
45 4.6 1.21 4.2 76% 

Block-Based 

Algorithm(CPU) 
153 7.8 3.11 1.3 21% 

Block-Based Algorithm 

with GPU 
42 4.2 1.10 4.6 78% 

CRS Architecture(CPU) 97 6.1 2.52 1.9 47% 

CRS Architecture with 

GPU 
32 3.5 0.82 6.0 84% 

3. Comparison of various methods 

Table 1 provides a comprehensive comparison of various high-dimensional matrix computation 

methods. The table details execution time, memory usage, cost, speedup factor, and efficiency 

improvement for each method. The integration of GPU acceleration significantly enhances 

performance, reducing execution time and cost while improving efficiency.The table compares the 

performance of different computational methodologies in terms of execution time, memory usage, 

cost, speedup factor, and efficiency improvement. The baseline method, Gaussian Elimination (CPU), 

requires 180 seconds to complete, consumes 8.1 units of memory, and incurs a cost of 3.52, serving 

as the reference point for comparisons.   

When GPU acceleration is applied to Gaussian Elimination, execution time drops significantly to 

45 seconds (a 4.2× speedup), while memory usage decreases to 4.6 units and cost reduces to 1.21, 

resulting in a 76% efficiency improvement over the CPU version. The Block-Based Algorithm (CPU) 

shows moderate improvements over standard Gaussian Elimination (CPU), reducing execution time 

to 153 seconds (a 1.3× speedup) and memory usage to 7.8 units, with a 21% efficiency gain. Its GPU-

accelerated version further enhances performance, completing in 42 seconds (a 4.6× speedup) with 

4.2 memory units consumed and a cost of 1.10, achieving 78% efficiency improvement.   
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The most efficient method is the CRS Architecture (Compressed Row Storage), which optimizes 

sparse matrix computations. The CPU version already outperforms Gaussian Elimination, finishing 

in 97 seconds (a 1.9× speedup) with 6.1 memory units and a cost of 2.52, yielding a 47% efficiency 

gain. When GPU acceleration is applied, CRS achieves the best overall performance: 32 seconds 

execution time (a 6.0× speedup), 3.5 memory units, and a cost of 0.82, delivering an 84% efficiency 

improvement—the highest among all tested methods.   

4. Conclusion 

It is expected to break through the existing limitations and promote the evolution of high-dimensional 

financial computing to dynamic and intelligent paradigm. The methodological study in this paper 

systematically explores the technical path of high-dimensional matrix computation and the 

optimization strategy of serverless architecture for financial applications. At the computational level, 

high-dimensional matrix methods cover direct methods (e.g., dynamic pivoting Gaussian elimination). 

Iterative methods (combining compressed row storage CRS and GPU acceleration) and randomized 

algorithms, which significantly improve the efficiency of financial derivatives pricing, risk modeling 

and other scenarios (e.g., tridiagonal option model speeds up by 40%, and sparse matrix memory 

consumption is reduced by 60%) through hardware synergy and storage optimization. Serverless 

architecture shows 2.85x speedup and 90% cost savings in parallel tasks such as matrix multiplication 

and Monte Carlo simulation through elastic scaling and on-demand billing, but its stateless design 

leads to limited efficiency of iterative algorithms (e.g., Cholesky decomposition), and relies on hybrid 

architectures (e.g., serverless and local GPU collaboration) and middleware (Redis, AWS) to achieve 

state management. Step Functions) to realize state management, partially alleviating the contradiction 

between cold-start latency (from 2 seconds to 50 milliseconds) and the real-time nature of high-

frequency transactions. Facing the high-dimensional complexity (O(n³) computing pressure), data 

missing and privacy compliance challenges of financial modeling, the study proposes a future 

direction of fusing quantum computing acceleration, adaptive check pointing and federated learning 

to balance computational efficiency, regulatory requirements, and system scalability, and to promote 

the transition of financial computing from static clustering to dynamic intelligent scheduling 

paradigm. In the future, the fusion of quantum computing acceleration and adaptive checkpointing 

technology has 
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