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Abstract: Policy gradient (PG) methods are a fundamental component of deep reinforcement 

learning (DRL), particularly effective in continuous and high-dimensional control tasks. This 

paper presents a structured review of PG algorithms, tracing their development from basic 

Monte Carlo methods like REINFORCE to advanced techniques such as asynchronous 

advantage actor-critic (A3C), trust region policy optimization (TRPO), proximal policy 

optimization (PPO), deep deterministic policy gradient (DDPG), and soft actor-critic (SAC). 

These methods differ in terms of policy structure, optimization stability, and sample 

efficiency, addressing core challenges in policy learning through gradient-based updates. In 

addition, this review explores the application of PG methods in real-world domains, including 

autonomous driving, financial portfolio management, and smart grid energy systems. These 

applications demonstrate PG methods’ capacity to operate under uncertainty and adapt to 

complex dynamic environments. However, limitations such as high variance, low sample 

efficiency, and instability in multi-agent and offline settings remain significant obstacles. The 

review concludes by outlining emerging research directions, including entropy-based 

exploration, model-based policy optimization, meta-learning, and Transformer-based 

sequence modeling. This work aims to offer theoretical insights and practical guidance to 

support the continued advancement and application of policy gradient methods in 

reinforcement learning. 

Keywords: Policy Gradient, Deep Reinforcement Learning, Actor-Critic Algorithms, Sample 

Efficiency, Multi-Agent Systems. 

1. Introduction 

Reinforcement Learning (RL) is a learning paradigm that combines principles from artificial 

intelligence, statistics, optimization, and dynamic systems theory [1]. It models the way humans and 

animals learn through interactions with their environment [1]. The core idea of RL lies in enabling an 

agent to perceive the environment, take actions, receive rewards, and adjust its behavior policy to 

achieve specific goals [1]. The Markov Decision Process (MDP) provides a theoretical modeling 

framework for this process, encompassing perception, action, and goal achievement [1]. A typical RL 

system consists of key components such as the agent, environment, policy, reward signal, value 

function, and an optional environment model [1]. 

Unlike supervised learning, which relies on labeled data, and unsupervised learning, which seeks 

to uncover latent structures, reinforcement learning focuses on maximizing cumulative rewards 

through trial-and-error interactions with the environment [1].  Consequently, RL is widely regarded 

as the third paradigm in machine learning, complementing supervised and unsupervised learning [1]. 
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However, traditional RL methods are limited in handling high-dimensional state spaces and 

continuous action control tasks [2]. Inspired by dopamine-based signaling mechanisms in biological 

neural systems, researchers have proposed Deep Reinforcement Learning (DRL), which integrates 

deep neural networks to enhance perception and decision-making capabilities [2]. DRL enables 

agents to learn directly from high-dimensional sensory inputs and demonstrate superior performance 

in complex control tasks [2]. 

To address the limitations of traditional RL methods in continuous control and high-dimensional 

state spaces, researchers have proposed a range of advanced algorithmic frameworks. Among various 

DRL approaches, Policy Gradient (PG) methods have emerged as a prominent class of algorithms in 

DRL due to their capability to directly optimize parameterized policies [3]. PG methods typically 

perform policy optimization using stochastic gradient ascent [3]. Compared to value-based methods, 

PG methods offer greater adaptability and expressiveness in continuous action spaces and enable 

smoother policy updates [3]. However, PG methods also suffer from high variance in gradient 

estimation and low sample efficiency [4]. Moreover, excessively large policy updates may lead to 

performance collapse, affecting convergence and stability [4]. 

This paper provides a comprehensive review of policy gradient methods in deep reinforcement 

learning. It systematically analyzes their theoretical foundations and representative algorithms along 

with their applications across diverse domains, including path planning, financial portfolio 

management, and electricity market pricing. The review also identifies current challenges and 

outlines future research directions, offering valuable insights for both academic researchers and 

practical implementations. 

2. Policy Gradient methods 

2.1. Fundamentals of Policy Gradient methods 

Policy Gradient (PG) methods are a fundamental class of reinforcement learning algorithms that 

optimize policy parameters by computing the gradient of expected cumulative rewards with respect 

to those parameters. The REINFORCE algorithm, introduced by Williams [3], is a canonical example 

that estimates policy gradients using sampled returns and updates parameters via the log-probability 

gradient scaled by return. As a Monte Carlo method, REINFORCE operates over complete episodes, 

using full trajectory returns to compute unbiased gradients. However, it suffers from high variance, 

especially in long-horizon tasks, which can impede convergence. To mitigate this, a baseline 

function—typically the state value—can be subtracted from returns without introducing bias, 

effectively reducing variance and stabilizing learning [3]. 

While stochastic PG methods suit discrete action spaces, many real-world problems involve 

continuous control. To address this, Lillicrap et al. proposed Deep Deterministic Policy Gradient 

(DDPG), which combines deterministic policy updates with deep function approximators [2]. DDPG 

extends the actor-critic framework to continuous actions, using a deterministic actor and a critic that 

estimates the Q-value. The algorithm also employs target networks and experience replay, which 

reduce variance and enhance training stability in off-policy settings. 

Advancements in value estimation have further improved sample efficiency and stability. 

Schulman et al. introduced Generalized Advantage Estimation (GAE), which refines the advantage 

function using a weighted combination of temporal-difference errors [4]. GAE introduces a tunable 

bias-variance trade-off, enabling more stable and efficient learning in high-dimensional environments. 

Concurrently, Mnih et al. proposed Asynchronous Advantage Actor-Critic (A3C), which updates 

policy and value networks using multiple actor-learners operating asynchronously, accelerating 

learning and reducing data correlation [5]. 
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Another key innovation in PG methods is the integration of entropy into the objective function. 

Entropy regularization encourages more diverse behaviors, reducing the risk of premature 

convergence to suboptimal policies. Soft Actor-Critic (SAC), proposed by Haarnoja et al., 

incorporates this idea into an off-policy actor-critic framework. By maximizing a weighted sum of 

expected return and policy entropy, SAC improves robustness and sample efficiency, especially in 

continuous control tasks where exploration is vital [6]. 

2.2. Key Policy Gradient algorithms 

REINFORCE remains the foundational policy gradient method and is often used as a baseline in 

algorithmic comparisons [3]. It offers simplicity and generality but suffers from high sample variance 

due to its reliance on Monte Carlo return estimates. The method also struggles in tasks with sparse or 

delayed rewards, where full trajectory feedback is less informative. To address these limitations, 

asynchronous actor-critic methods such as A3C introduce multiple parallel learners that share and 

update global policy and value networks asynchronously [5]. This parallelism increases stability and 

speeds up convergence by decorating data and improving exploration. 

To further enhance training reliability, Schulman et al. proposed Trust Region Policy Optimization 

(TRPO), which imposes a constraint on policy updates by bounding the Kullback–Leibler (KL) 

divergence between successive policies [7]. This ensures each policy update remains within a “trust 

region,” preserving training stability and yielding monotonic performance improvement. However, 

TRPO’s constrained optimization introduces computational overhead, limiting its practicality. 

To address this, the same authors introduced Proximal Policy Optimization (PPO) [8], which 

simplifies TRPO by replacing hard KL constraints with a clipped surrogate objective. PPO retains 

the stability of TRPO while significantly improving practical usability through simplified 

implementation and reduced computational overhead [8]. Its simplicity and empirical performance 

have made PPO one of the most widely used algorithms in DRL. 

For problems requiring fine-grained control in continuous action spaces, DDPG offers a 

deterministic variant of the policy gradient approach [2]. It combines a deterministic actor network 

with a Q-function critic and trains both using off-policy data from a replay buffer. Although DDPG 

is capable of learning in high-dimensional action spaces, it is sensitive to hyperparameters and 

exploration noise, which can lead to instability. 

SAC extends the actor-critic architecture by adopting a stochastic policy and integrating an 

entropy-based objective [6]. This maximum entropy framework encourages broader exploration and 

enables better coverage of the action space. SAC also employs twin Q-networks and a temperature 

parameter to balance reward and entropy, offering improved performance and sample efficiency in a 

range of complex, continuous tasks. 

A comparative summary of the key characteristics of these policy gradient algorithms is presented 

in Table 1. The table highlights differences in policy formulation, applicability to action spaces, 

training strategies, and practical considerations. 

Table 1: Comparative summary of key Policy Gradient algorithms in Deep Reinforcement Learning 

Algorithm Policy Type Action Space 
On/ 

Off Policy 

Entropy 

Regularization 

Sample 

Efficiency 
Remarks 

REINFORCE Stochastic Discrete On-policy No Low 
High variance, 

simple 

A3C Stochastic Discrete/Continuous On-policy No Medium 
Asynchronous 

updates 

TRPO Stochastic Continuous On-policy No Medium 
KL constraint 

ensures stability 
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PPO Stochastic Continuous On-policy No High 
Practical, 

widely used 

DDPG Deterministic Continuous Off-policy No High 
Sensitive to 

hyperparameters 

SAC Stochastic Continuous Off-policy Yes Very High 

Maximum 

entropy 

objective 

3. Application domains of PG methods 

3.1. Autonomous driving and path planning 

PG methods have demonstrated strong applicability in autonomous systems, particularly in trajectory 

generation and path planning for autonomous vehicles, UAVs, and mobile robots [9]. Traditional 

control algorithms like Proportional–Integral–Derivative, Dijkstra, and A* often perform well in 

static settings but face limitations in dynamic, uncertain, and continuous action environments due to 

their lack of adaptability and inability to optimize behavior policies directly [9]. 

PG methods, in contrast, allow agents to learn through environmental interactions and optimize 

parameterized policies to maximize cumulative rewards. DDPG is a representative algorithm 

designed for continuous action control. In autonomous driving, DDPG can be employed to control 

steering angles, throttle, and braking by directly mapping raw sensor inputs to continuous actions 

[10]. For instance, DDPG has been successfully applied in vision-based path tracking systems, 

outperforming classical control schemes by enabling smooth trajectory following and reduced lane 

deviation errors [10]. 

SAC, leveraging maximum entropy reinforcement learning, introduces entropy-based 

regularization to encourage exploration and improve sample efficiency [6]. SAC has been shown to 

stabilize policy learning in highly dynamic driving scenarios, such as obstacle avoidance with moving 

targets or varying weather conditions [6]. Multi-agent systems also benefit from PG methods in 

cooperative path planning, where decentralized agents learn to coordinate without centralized control. 

In such tasks, each agent uses local observations and learns a policy that contributes to global 

objectives like collision-free routing or energy-efficient movement [11]. 

The integration of PG methods into autonomous driving not only improves control precision but 

also enhances decision-making under uncertainty, marking a transition from rule-based to learning-

based paradigms in intelligent mobility. 

3.2. Financial investment and portfolio optimization 

The financial domain presents a highly dynamic and non-stationary environment, where decision-

making tasks include portfolio optimization, asset allocation, dynamic hedging, and risk-sensitive 

investment strategy formulation [12-14]. Traditional methods such as mean-variance optimization or 

rule-based rebalancing fail to adapt rapidly to market changes. PG methods are increasingly adopted 

due to their ability to optimize return-driven policies in continuous action spaces—a critical 

requirement in financial applications where decisions often involve proportionally allocating capital 

across multiple assets [13]. 

DDPG has been applied to portfolio management, where the agent observes market indicators and 

outputs continuous asset allocation weights [14]. Empirical studies show that DDPG-based models 

outperform baselines in maximizing the Sharpe ratio and reducing maximum drawdown [14]. SAC 

and PPO have also been used to design robust trading policies under volatility by leveraging entropy-

Table 1: (continued) 
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regularized exploration and stable policy updates [13-16]. In high-frequency trading, these methods 

enable learning from tick-level data and adapt to market microstructure changes in real time. 

A particularly promising direction is Meta-Policy Gradient (Meta-PG), which enables agents to 

generalize across market regimes. By encoding prior experience across tasks, Meta-PG can quickly 

adapt to new market conditions using minimal data [14]. For example, it can retrain a financial policy 

in response to sudden interest rate shifts or geopolitical shocks without full model retraining. These 

approaches offer key advantages in financial risk management and policy transferability. 

3.3. Energy pricing and smart grid control 

In the energy domain, PG methods have found increasing applications in electricity pricing, 

distributed energy resource management, and smart grid scheduling. Tasks such as energy dispatch, 

price optimization, and aggregator coordination involve continuous decision-making under 

uncertainty, making PG algorithms a natural fit [16]. 

DDPG has been deployed in electric vehicle aggregator systems, where the agent learns charging 

and discharging policies in response to real-time electricity prices and vehicle battery states [16]. PPO 

has been applied to maximize grid revenue while maintaining energy balance in the face of fluctuating 

demand and supply [16]. SAC has shown strong performance in managing battery energy storage 

systems, ensuring real-time load balancing while optimizing operational efficiency [17]. These 

models allow energy providers to respond dynamically to peak loads and improve energy utilization 

efficiency. 

Multi-agent scenarios are also prevalent in power systems. For example, in distributed microgrids, 

each generation or load unit acts as an independent agent. PG-based multi-agent frameworks enable 

decentralized control and cooperative pricing strategies through shared reward mechanisms [11]. This 

supports a more resilient and adaptive grid infrastructure. 

4. Challenges and future trends in PG methods 

Despite their success in domains such as autonomous driving, finance, and energy systems, PG 

methods face common limitations, including low sample efficiency, high variance, and coordination 

complexity in multi-agent scenarios. This section summarizes these key challenges and outlines 

emerging solutions. 

4.1. Sample efficiency and variance reduction 

A core limitation of PG methods is high variance in gradient estimation, leading to unstable updates 

and slow convergence [4]. In domains like robotics, healthcare, and energy systems, data collection 

is costly or constrained by safety, making sample efficiency a critical concern [15, 19]. Variance 

reduction strategies include using baseline estimators such as value and advantage functions. GAE 

improves variance control by combining multi-step returns with exponential weighting [4], helping 

stabilize updates and reduce inefficiency. Algorithms like SAC add entropy regularization to 

encourage exploration while maintaining robustness [6]. Replay buffers improve sample reuse via 

off-policy training, and model-based extensions reduce reliance on real interactions by simulating 

virtual rollouts from learned dynamics [18]. Transformers have been introduced to model long-range 

temporal dependencies in state-action sequences, enhancing policy generalization. In tasks like multi-

step planning, asset reallocation, and energy dispatch, Transformer-based policies outperform 

conventional architectures by better modeling sequential decision logic [19]. 
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4.2. Offline Policy Gradient challenges 

Offline RL aims to learn policies from static datasets without environmental interaction. However, 

PG methods suffer from value overestimation and distributional shifts between behavior and target 

policies [15]. Conservative Q-Learning addresses this by penalizing Q-values for out-of-distribution 

actions, promoting safer policies [20]. Offline SAC and DDPG variants use entropy regularization, 

behavior cloning loss, and action clipping to stabilize training and reduce overfitting [6]. Alternative 

algorithms include Batch-Constrained Q-learning, which limits exploration to dataset-supported 

actions, and Advantage-Weighted Actor-Critic, which prioritizes high-reward trajectories via 

advantage-weighted updates [20]. Offline Policy Learning adds trust-region constraints and 

divergence measures to improve stability. Decision Transformer reframes offline RL as sequence 

modeling, treating trajectories as token sequences and predicting actions based on return-to-go, 

achieving strong results without value functions [19]. Hybrid offline-to-online approaches combine 

offline pretraining with online finetuning. Meta-PG further improves generalization by learning task-

adaptive priors that rapidly adapt to distributional shifts [14]. 

4.3. Multi-agent Policy Gradient issues 

In multi-agent systems, the environment is non-stationary, as each agent’s policy affects others’ 

observations and rewards [11]. This increases training instability and hinders convergence. The credit 

assignment problem further complicates identifying individual contributions in cooperative settings 

[11]. MADDPG addresses these challenges through centralized training and decentralized execution. 

Centralized critics use global information to guide learning, while decentralized actors operate 

independently at deployment [11]. MAPPO extends PPO with shared baselines and clipped updates, 

enhancing scalability and stability [11]. Other advances include value decomposition for reward 

allocation and message-passing for inter-agent communication and coordination [11]. Hierarchical 

PG architectures divide control into strategic and tactical layers, where high-level agents set sub-

goals and low-level agents optimize execution [11]. Transformer-based multi-agent systems model 

inter-agent attention, enabling agents to capture spatial and temporal dependencies and improve 

coordination under partial observability [11]. 

4.4. Integrated trends in Policy Gradient methods 

Recent trends in PG research emphasize combining model-based dynamics learning, meta-learning, 

and Transformer-based representations. These synergistic frameworks offer enhanced sample 

efficiency, generalization, and adaptability. A key direction is the convergence of offline learning 

paradigms with multi-agent coordination through hierarchical and attention-based policy modeling. 

4.5. Open problems and future directions 

Despite recent progress, key challenges in policy gradient methods remain. First, scaling to multi-

agent systems under communication constraints and partial observability is difficult, requiring 

efficient coordination and stable learning architectures. Second, in dynamic environments like finance 

and energy, policies often fail to generalize due to non-stationarity, necessitating methods that prevent 

overfitting and enable fast adaptation. Third, cross-domain policy transfer remains limited, 

highlighting the need for better abstraction, meta-learning, and transferable representations. 

Addressing these challenges is essential for deploying PG methods in real-world, safety-critical 

applications. 
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5. Conclusions 

This paper presents a comprehensive review of PG methods in DRL, covering their theoretical 

foundations, representative algorithms, practical applications, and key challenges. Beginning with 

REINFORCE as a canonical Monte Carlo approach, we examined the evolution of PG methods 

through variance reduction techniques like GAE, scalable architectures such as A3C and PPO, and 

sample-efficient algorithms including DDPG and SAC. This paper also explored their deployment in 

domains like autonomous driving, financial portfolio management, and energy systems—where 

continuous control and decision-making under uncertainty are essential. 

Despite notable progress, PG methods still face core limitations: low sample efficiency, high 

variance in gradient estimation, and instability in learning—especially in environments with sparse 

rewards or safety constraints. In multi-agent settings, non-stationarity and credit assignment 

complicate training. Offline policy learning remains challenging due to distributional shifts and 

overestimation, though recent methods such as Decision Transformers and conservative Q-learning 

show promise. 

Future research should focus on improving sample efficiency through model-based learning and 

transformer-based trajectory modeling to enhance applicability in costly or risky domains. Hybrid 

offline-to-online regimes and meta-policy optimization can increase generalization and adaptability. 

Finally, scaling PG methods to complex multi-agent systems under partial observability and 

communication constraints requires advances in coordination, reward decomposition, and 

hierarchical control. Addressing these challenges is essential for realizing the full potential of PG 

methods in safety-critical, dynamic real-world systems. 
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