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Abstract: In recent years, with the rapid development of intelligent transportation, 

Reinforcement Learning (RL), as an adaptive decision-making method, has gradually 

permeated into various levels of Autonomous Driving (AD). Therefore, this paper reviews 

the latest advances in the application of RL in AD. In terms of high-level decision-making 

and behavioral planning, RL, combined with visual-language models, imitation learning, 

multi-stage training, and autoregressive trajectory planning, systematically improves 

planning accuracy and task success rates. At the motion control level, the synergistic 

optimization of deep reinforcement learning (DRL) based continuous control strategies and 

robust control methods enhances performance in path tracking, dynamic obstacle avoidance, 

and multi-sensor information fusion. Meanwhile, end-to-end autonomous driving leverages 

novel frameworks such as closed-loop RL, World Model (WM), and multimodal decision 

fusion, effectively narrowing the gap between simulation and real-world environments while 

achieving significant improvements in safety and smoothness. Additionally, the paper 

discusses the limitations of RL applications, including data dependency, training efficiency, 

safety, and interpretability. Furthermore, it explores the future prospects for achieving more 

intelligent autonomous driving systems through strategies such as meta-learning, transfer 

learning, adversarial training, and human-machine collaboration. 

Keywords: Reinforcement Learning (RL), Autonomous Driving (AD), high-level decision-

making, motion control, end-to-end. 

1. Introduction 

As Autonomous Driving (AD) advances toward higher levels of intelligence and autonomous 

decision-making, it has become a critical technical challenge to achieve accurate perception, rapid 

decision-making, and stable control in highly dynamic and complex traffic environments. Traditional 

AD researches often rely on modular designs that independently develop environmental perception, 

high-level decision-making, and motion control. Nevertheless, in complex road scenarios of the real 

world, these approaches struggle to achieve efficient coordination among modules. In recent years, 

Reinforcement Learning (RL) has been progressively introduced into AD systems due to its unique 

advantages in handling continuous control and uncertain environments. It can not only optimize the 

performance of individual modules, but also enhance overall system performance through end-to-end 

decision training. 

Specifically, in high-level decision-making and behavioral planning, RL integrates language 

models, imitation learning, multi-stage training, and autoregressive trajectory planning to improve 
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semantic understanding and behavioral diversity, significantly enhancing decision-making accuracy 

in complex road conditions [1-5]. For motion control, the fusion of RL and traditional control theory 

improves vehicle responsiveness in tasks such as path tracking and emergency obstacle avoidance [6-

8]. Meanwhile, end-to-end autonomous driving methods integrate multi-sensor information and 

leverage closed-loop training and world model algorithms to reduce errors effectively from 

perception to execution [9-12]. Although current methods have achieved notable success in 

simulation environments and some real-vehicle testing, their practical applications are still hindered 

by challenges such as data dependency, training sample complexity, safety, and interpretability. 

In the following sections, the paper will comprehensively review the application of RL in key 

aspects of AD, analyze existing limitations, and provide an in-depth discussion on future 

technological directions, thereby offering theoretical references and practical guidance for achieving 

robust autonomous driving systems. 

2. Applications of RL in key aspects of AD 

The development of Autonomous Driving technology is undergoing an evolution from modular 

architecture to end-to-end systems. Traditional AD system is usually composed of three core modules: 

environment perception, high-level decision-making and behavior planning, and motion control. The 

end-to-end rule realizes the direct mapping from sensor input to control output through deep learning. 

In this process, RL is gradually becoming the key technology to improve the performance of AD 

systems due to its unique advantages in complex decision-making problems.  

This section reviews the progress of RL applications in autonomous driving, focusing on three key 

components: high-level decision-making and behavioral planning, motion control, and end-to-end 

driving. It also analyzes the characteristics and experimental results of various representative methods. 

2.1. High-level decision-making and behavioral planning 

In high-level decision-making and behavioral planning, RL has evolved from optimizing a single 

algorithm to an innovative paradigm characterized by the deep fusion of multiple technologies, 

significantly advancing the system’s decision-making capabilities in complex dynamic environments. 

Current researches primarily focus on improving semantic understanding, optimizing behavioral 

diversity, enhancing trajectory planning efficiency, and refining environment modeling accuracy. By 

incorporating state-of-the-art learning algorithms and model architectures, these advances are driving 

AD systems toward higher levels of intelligence and reliability. 

In terms of enhancing semantic understanding, AlphaDrive integrates GRPO-based algorithm with 

four structured reward functions (planning accuracy reward, action-weighted reward, planning 

diversity reward, and planning format reward) to embed the semantic understanding capabilities of a 

visual language model (VLM) into RL framework. The framework employs a two-stage training 

strategy. Specifically, supervised fine-tuning (SFT) is used to distill planning inference knowledge 

from a large-scale model, followed by further optimization of planning performance via RL. 

Experiments indicate that AlphaDrive achieves a planning accuracy of 77.12% on the MetaAD 

dataset and represents a 25.5% improvement over the suboptimal model, significantly elevating safety 

and efficiency in complex driving scenarios [1]. Similarly, the LGDRL framework incorporates the 

Large Language Model (LLM) as a driving expert into deep Reinforcement Learning (DRL). It 

constrains RL policy deviation from LLM expert policy through JS-divergence and intermittently 

substitutes risky actions of the RL agent with LLM-mediated interventions, achieving a 90% task 

success rate in highway scenarios while delivering inference speeds far superior to those of the LLM 

expert [2]. 
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Regarding the optimization of behavioral diversity, the MRIC framework innovatively combines 

RL with imitation learning (IL). It leverages a differentiable simulator for efficient state matching, 

thus addressing the instability issues encountered in traditional training approaches. Furthermore, it 

introduces a hybrid encoder module that employs discrete embedding space and dynamic prior 

distribution to capture the diversity of driving behaviors, mitigating the generation of unrealistic 

actions in low-probability regions. Experiments on the Waymo Open Motion Dataset show that MRIC 

outperforms baseline models in terms of collision rate and minimum SADE, which confirms its 

advantages in modeling diverse and realistic driving behaviors [3]. 

For trajectory planning efficiency, CarPlanner proposes an autoregressive trajectory planning 

approach aimed at overcoming the low training efficiency and suboptimal performance of large-scale 

RL in autonomous driving. By introducing a consistent mode representation and generation-selection 

framework, combined with an expert-guided reward function and an invariant view module (IVM), 

the method achieves efficient and stable multimodal trajectory generation. Specifically, this method 

ensures coherence between time steps by decomposing longitudinal and lateral behaviors. In addition, 

the use of non-reactive transformation models further simplifies the training process, improving 

training efficiency and the generalization ability of strategies. Experimental results on the nuPlan 

dataset reveal that CarPlanner is superior to existing rule-based, imitation learning, and RL methods, 

which demonstrates its potential in complex real-world driving scenarios [4]. 

With respect to environment modeling accuracy improvement, Imagine-2-Drive combines a high-

fidelity world model with a diffusion policy actor (DPA). The world model predicts future states and 

rewards to provide precise environment modeling, while DPA utilizes the diffusion model to generate 

multimodal behavior patterns, thereby enhancing the diversity and robustness of trajectory planning. 

Optimized through a DDPO strategy to maximize cumulative rewards, Imagine-2-Drive yields a 

better result than existing methods in the CARLA simulator, achieving improvements of 15% in route 

completion rate and 20% in overall success rate. This offers an efficient and flexible solution for long-

horizon trajectory planning in autonomous driving [5].  

Overall, recent applications of reinforcement learning in high-level decision-making and behavior 

planning for autonomous driving are increasingly driven by synergistic innovations across multiple 

technologies. While AlphaDrive and LGDRL enhance semantic understanding through language 

models, MRIC improves behavioral diversity via imitation learning integration. CarPlanner optimizes 

planning efficiency, whereas Imagine-2-Drive refines environmental modeling precision. These 

innovations not only address domain-specific challenges, but collectively provide comprehensive 

technical support for building more intelligent and reliable AD decision systems.  

2.2. Motion control 

RL offers novel approaches to address the limitations of traditional control methods in complex and 

dynamic environments. Current research primarily focuses on three key areas: the design of 

continuous control strategies based on deep reinforcement learning (DRL), the collaborative 

optimization of robust control and RL, and the enhancement of RL algorithms tailored for emerging 

electronic and electrical (E/E) architectures. These studies effectively enhance autonomous vehicles' 

performance in path tracking, dynamic obstacle avoidance, and stability control, thereby laying a 

solid foundation for developing safer and more efficient motion control systems. 

In the realm of continuous control strategy design, significant progress has been made using DRL. 

Researchers have conducted systematic comparisons between Deep Q-Network (DQN) and Deep 

Deterministic Policy Gradient (DDPG) algorithms within the CARLA simulation environment. 

Through constructing comprehensive vehicle models encompassing both longitudinal and lateral 

dynamics, various DRL architectures were explored, incorporating visual inputs, waypoint 

information, and convolutional neural networks. Experimental results indicate that DDPG 
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outperforms DQN in training efficiency and path tracking accuracy, closely mirroring human driving 

behavior [6]. Notably, architectures based on waypoint information demonstrated superior 

performance across all tested scenarios, which provides valuable insights for developing more 

efficient motion control algorithms. 

From the perspective of integrating robust control with RL, recent studies have combined robust 

control theory with the Proximal Policy Optimization (PPO) algorithm to achieve high-performance 

vehicle dynamics control. A robust controller based on H∞ method was designed, which employs a 

supervisor to execute constrained quadratic programming tasks, ensuring safety in critical 

performance metrics such as lateral error. Simultaneously, the PPO algorithm optimized dynamic 

performance indicators, such as high-speed driving and path tracking. Experimental validations 

demonstrate that this hybrid control approach excels in both simulation and real-world tests, 

particularly in suppressing lateral acceleration. This offers a novel technical pathway for motion 

control in autonomous driving [7].  

To address the challenges posed by new E/E architectures, improved DRL frameworks have been 

developed. Researchers first conducted precise modeling of domain-centralized E/E architectures and 

vehicle motion control problems, followed by latency analysis multi-hop control loops to determine 

the theoretical boundary values of loop delays in heterogeneous topologies. Based on this analysis, 

an enhanced heuristic experience replay mechanism was innovatively proposed, integrating estimated 

loop delay values into the motion controller optimization process. To promote algorithm convergence, 

the method combined Nesterov accelerated gradient with adaptive moment estimation techniques. 

Through a combination of virtual and real-world testing, the framework not only improved control 

performance but also ensured system robustness against inherent delays in E/E architectures, which 

provides a crucial reference for motion control of the next-generation AD systems [8]. 

In summary, the application of RL in autonomous vehicle motion control has yielded substantial 

results. From the collaborative optimization of robust control and RL, to algorithm enhancements 

tailored for emerging E/E architectures, together with the design of continuous control strategies 

based on DRL, recent studies reflect notable progress on multiple fronts. These works highlight three 

key characteristics: a strong integration of control theory with learning algorithms, innovative 

solutions to real-world engineering challenges, and rigorous validation through comprehensive 

simulation and real-world testing. Collectively, they propel the development of motion control 

technologies in autonomous driving. 

2.3. End-to-end driving 

In end-to-end autonomous driving systems, RL has gradually emerged as a crucial tool for 

constructing efficient decision-making and control mechanisms. Unlike traditional modular 

approaches, end-to-end RL methods optimize direct mapping from sensor inputs to control outputs to 

enhance the performance of the overall system. In recent years, numerous studies have explored how 

to use RL to address dynamic interactions in complex traffic environments, fuse multi-sensor 

information, and improve the understanding of causal reasoning. In response, researchers have 

proposed various innovative solutions. 

First, in order to address the shortcomings of conventional imitation learning (IL) techniques in 

causal understanding and open-loop deployment, a reinforcement learning framework based on 3D 

Gaussian mapping (3DGS) was first presented. In particular, the approach builds a realistic digital 

twin environment to enable the policy to conduct substantial trial-and-error exploration of the state 

space. In the meantime, a specially built safety-related reward function allows the policy to handle 

major risk events. Additionally, IL is added as a regularization term during training to bring RL closer 

to human behavior, resulting in a synergistic synergy between RL and IL. According to the results, 
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the method reduces collision rates by about 3 times in closed-loop tests and remarkably increases 

trajectory consistency and driving smoothness [9].  

Second, the CarDreamer platform was developed to support world-model-based RL algorithms. 

This open-source platform integrates advanced world model techniques and provides a standardized 

Gym interface. It offers highly configurable tasks, an optimized reward function, a flexible task 

development suite, and a visualization server. Experiments on the CARLA simulator demonstrate that 

the platform effectively enhances system safety and efficiency under various observation modalities 

and communication configurations [10]. CarDreamer not only offers researchers a convenient tool 

for development and evaluation but also lays a solid foundation for future RL algorithm research in 

autonomous driving. 

Third, to tackle the challenges of highly interactive traffic environments, the Ramble algorithm 

adopts a fully end-to-end, model-based RL framework. The approach transforms multi-view RGB 

images and LiDAR point cloud data into compact latent representations that encapsulate the overall 

traffic scene. In addition, it utilizes a transformer-based structure to capture temporal dependencies, 

enabling precise predictions of future states. Experiments on CARLA Leaderboard 1.0 and 2.0 indicate 

that Ramble achieves exceptional results in route completion and driving scores, underscoring its 

effectiveness and robustness in complex, dynamic traffic scenarios [11]. 

In addition, the PolicyFuser method was proposed to solve the challenge of multi-sensor decision 

fusion. The method preserves each sensor's independent decision to avoid the overhead of complex 

feature alignment. Specifically, RL is used to select the action corresponding to the optimal Q-value 

as the primary decision, while outputs from other sensors fine-tune this decision. To improve fusion 

stability, a conditional variational autoencoder (CVAE) generates pseudo-expert decisions, effectively 

reducing discrepancies among sensor decisions. Experimental results indicate that PolicyFuser not 

only attained the highest driving score in CARLA tests but also demonstrated excellent sensor fault 

tolerance, offering robust support for sensor redundancy design in real-world applications [12]. 

To sum up, current research on RL methods in end-to-end AD exhibits a diverse trend. Closed-

loop RL framework built on 3D Gaussian mapping, CarDreamer platform that leverages world models, 

and solutions such as the Ramble algorithm for highly interactive scenarios as well as PolicyFuser’s 

multimodal strategy fusion have each overcome the limitations of conventional methods at different 

levels. Together, they established an efficient connection between environment perception and 

control output. 

3. Limitations and future prospects 

3.1. Limitations 

RL has demonstrated significant potential in all key areas of AD. However, some limitations remain 

in its applications in the three aspects mentioned above. 

In high-level decision-making and behavior planning, RL methods rely heavily on large amounts 

of labeled data. The collection and annotation of such data are costly, and insufficient data diversity 

often leads to degraded performance in long-tail scenarios [1]. Moreover, training efficiency is a 

critical issue. Traditional model-free methods require repeatedly calling simulators for data collection. 

Coupled with limited generalization beyond closed-loop environments, these factors pose substantial 

challenges for real-world applications [4]. Additionally, the opaque, black-box nature of RL models 

compromises both safety and interpretability, while inadequate multimodal behavior modeling 

restricts their adaptation to complex traffic scenarios [1, 3]. 

In the domain of motion control, current algorithms generally perform well in specific simulated 

environments. However, when confronted with previously unseen traffic situations or extreme 

weather conditions, their generalization capabilities are often insufficient [6, 7, 8]. Furthermore, RL 
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training typically demands a large number of samples. Algorithms like DQN and DDPG have high 

sample complexity, and the significant discrepancies between simulated and real-world environments 

affect the reliability of these models on actual roads. In addition, the requirements for real-time 

performance, along with the limitations of embedded hardware resources, make it challenging for 

complex deep networks to meet strict latency constraints. Consequently, safety and robustness under 

emergency conditions remain deficient [7, 8]. 

For end-to-end autonomous driving applications, RL faces major challenges including low sample 

efficiency due to the high-dimensional state space, making real-world tests both expensive and 

fraught with safety risks [9]. Moreover, the model’s generalization performance in new scenarios or 

adverse weather conditions is often poor; dangerous behaviors may occur, potentially violating traffic 

rules. The high computational demands further constrain its widespread adoption [10, 11, 12]. In 

addition, the alignment problem between RL-learned policies and human driving behavior needs 

urgent resolution, as policies often diverge from human driving habits, thereby reducing social 

acceptance [9]. 

3.2. Future prospects 

Despite these limitations, the future of RL in the three aspects analyzed earlier still remains promising, 

and it is expected to be improved through various technological innovations. 

As for high-level decision-making and behavior planning, advanced architectures and algorithms, 

such as those integrating generative adversarial networks (GAN) with diffusion models, can be 

developed to enhance model generalization and multimodal modeling capabilities. Meanwhile, 

model-based RL methods for multi-step planning may improve training efficiency and closed-loop 

performance [3, 4]. Besides, the application of data augmentation, synthetic data generation, transfer 

learning, and meta-learning can help reduce reliance on extensively annotated datasets. Moreover, 

combining large language models with multimodal perception techniques and incorporating imitation 

learning can further enhance decision accuracy, interpretability, and safety [1, 4]. Robustness-

enhancing mechanisms such as dynamic safety constraints and adversarial training, along with cross-

domain deployment approaches, also offer new directions for future development [5]. 

In the domain of motion control, the integration of multi-agent RL and digital twin technologies to 

construct more realistic simulation environments holds the potential to improve generalization 

capabilities of models in complex, dynamic scenarios [8]. Research on meta-learning and efficient 

optimizers, as well as improvements in experience replay mechanisms, is also expected to optimize 

training efficiency. Furthermore, lightweight network designs and hardware acceleration techniques 

can effectively satisfy real-time requirements, ensuring rapid decision-making without compromising 

safety [7, 8]. 

Regarding end-to-end autonomous driving applications, a key direction lies in improving sample 

efficiency. By fusing imitation learning, meta-learning, and transfer learning, it is possible to derive 

high-quality policies with fewer data [10]. Constructing more representative simulation environments 

and utilizing advanced feature extraction techniques can enhance the model’s adaptability to unseen 

scenarios. Moreover, the incorporation of more intelligent reward design and constraints, along with 

the optimization at hardware levels can further boost safety and computational efficiency. Finally, 

leveraging human feedback and preference learning may help align model policies with human 

driving behaviors, thereby improving ride quality and social acceptance [9, 11, 12]. 

Therefore, through interdisciplinary technological integration and continuous exploration of 

innovation methods, RL is poised to drive the evolution of AD systems toward enhanced safety, 

robustness and practicality. 
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4. Conclusion 

In summary, RL methods have shown great potential in complex autonomous driving scenarios due 

to their superior exploration and decision-making capabilities. 

In the area of high-level decision-making and behavior planning, current research exhibits a trend 

toward multi-technology synergistic innovation. Researchers have advanced semantic understanding 

through language models, improved behavioral diversity with IL, optimized trajectory planning 

efficiency with autoregressive architectures, and enhanced environment modeling accuracy through 

WMs. Together, these approaches promote the development of more intelligent and reliable decision 

systems. 

In the domain of motion control, DRL algorithms (e.g. DDPG) have demonstrated continuous 

control performance that surpasses traditional methods (e.g. DQN). Besides, the collaborative design 

combining H∞ with PPO has improved system stability. Furthermore, optimization algorithms 

designed for E/E architectures have addressed real-time challenges, resulting in accurate and stable 

performance in path tracking and dynamic obstacle avoidance. 

In end-to-end autonomous driving, 3DGS allows closed-loop RL training, while the CarDreamer 

platform provides a standardized development environment based on WMs. The transformer-based 

Ramble algorithm drives the system to handle complex scenarios, whereas PolicyFuser innovatively 

addresses the challenge of fusing decisions from multiple sensors. These methods collectively 

establish an efficient integration among environment perception, decision planning, and motion 

control, thereby elevating overall system performance. 

Despite the encouraging progress achieved in simulations and partial real-world validations,  

current research still faces several challenges, including the trade-off between data dependency and 

training efficiency, the gap between simulated and real-world environments, and the assurance of 

model safety and interpretability. Future work may address these challenges by integrating meta-

learning and transfer learning to develop more efficient model architectures and training paradigms. 

It may also involve constructing more realistic digital twin environments to reduce the simulation-to-

reality gap, improving formal verification and adversarial training techniques to ensure safety, and 

optimizing human-machine collaboration strategies to enhance social acceptance. These advances 

will collectively advance the application of RL in AD toward a higher level of safety, robustness, and 

practicality, thereby laying a solid foundation for the realization of fully autonomous driving. 
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