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Abstract: The accurate classification of seismic signal and noise is a crucial part of earthquake 

early warning systems. However, the complex and changeable noise poses severe challenges 

to signal classification. In this study, an innovative hybrid architecture named ResNetKAN1D 

is proposed, which combines the Residual Network (ResNet), dual attention mechanism, and 

Kolmogorov-Arnold Network (KAN). In this architecture, the dual attention mechanism, 

namely channel attention and spatial attention, is embedded in the residual blocks, which 

significantly enhances the ability to focus on and select key features. At the same time, the 

KAN layer is used to replace the traditional Multilayer Perceptron (MLP), and for the first 

time, KAN is applied to seismic signal classification, greatly improving the nonlinear 

modeling ability of the model. The dual attention mechanism dynamically enhances the key 

spatiotemporal features. Combined with the nonlinear modeling ability of KAN, it 

significantly improves the feature selection efficiency of ResNet. Experimental results on 

STEAD show that the ResNetKAN1D model significantly improves the effect of seismic 

signal classification. 

Keywords: Seismic signal classification, Attention mechanism, KAN 

1. Introduction 

Seismic signal classification constitutes a critical component of earthquake early warning (EEW) 

systems, as its accuracy critically determines the timeliness and reliability of warnings, which are 

paramount to safeguarding lives and mitigating property damage. With the continuous improvement 

of global seismic monitoring networks, massive amounts of seismic data are collected. However, 

noise in this data severely interferes with feature extraction, making accurate classification of seismic 

signal and noise a highly challenging task. 

In the field of seismological research, traditional machine learning methods such as Support Vector 

Machines (SVM) and Random Forests have been extensively investigated and have demonstrated 

considerable application value and potential in seismic signal classification tasks [1]. developed a 

SVM classifier based on discriminative features of the data to categorize seismic events occurring in 

the Tianshan Orogenic Belt of China [2]; utilized the amplitudes of P-waves and S-waves as feature 

vectors, employing different SVM kernel functions to distinguish between earthquakes and 

explosions [3]; implemented nonlinear approaches including Random Forests, SVM, and Naive 

Bayes Classifier (NBC) for seismic event discrimination [4]; trained a Generative Adversarial 

Network (GAN) to extract primary characteristics of early P-waves, which were subsequently used 

by Random Forests for waveform classification [5]; applied supervised Random Forests to classify 
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windowed seismic data within continuous data streams [6]; established discriminators using Fisher 

classifiers, Naive Bayes classifiers, and logistic regression to differentiate between seismic events 

and seismic waves generated by explosions. 

With the advancement of deep learning, methods such as Convolutional Neural Networks (CNN), 

Long Short-Term Memory networks (LSTM), Transformer, VGG, and AlexNet have been widely 

applied in seismic signal classification. CNNs were employed using aftershock data from the 

Wenchuan earthquake to classify seismic events from noise [7]; [8] adopted various approaches 

including Support Vector Machines (SVM), eXtreme Gradient Boosting (XGBoost), LSTM networks, 

Residual Neural Networks, and Long Short-Term Memory-Fully Convolutional Networks (LSTM-

FCN) to construct binary and ternary classification models for distinguishing tectonic earthquakes, 

explosions, and mining-induced seismic events; Recurrent Neural Networks (RNN), LSTM networks, 

and Gated Recurrent Units (GRU) were utilized to extract temporal and frequency information from 

continuous seismic data, enabling effective detection and classification of seismic events [9]; The 

CCViT [10] model combines CNNs with Transformer to accurately identify genuine microseismic 

signals [11]; implemented four distinct CNN architectures, namely AlexNet, VGG16, VGG19, and 

GoogLeNet for efficient identification of natural earthquakes, explosions, and collapse events; The 

seismic event classification model presented in [12] integrates waveform data from multiple stations 

and employs CNNs with Graph Convolutional Networks (GCNs) to enhance classification 

performance [13]; investigated the classification performance of Multilayer Perceptron (MLP) neural 

networks for seismic signals in the Agadir region. 

Both traditional machine learning methods and deep learning methods have several core 

limitations. Traditional machine learning methods are highly dependent on feature engineering. 

Researchers need to rely on profound professional knowledge and rich experience to manually extract 

and screen suitable features, and this process has a significant impact on the final classification results. 

Moreover, traditional methods are extremely prone to falling into overfitting, which in turn leads to 

a decline in classification accuracy. Although deep learning methods have advantages in automatic 

feature extraction, they also have the problem of insufficient long-range dependence. Seismic signal 

has complex time series and spatial relationships, while deep learning models often have difficulty 

effectively capturing and utilizing long-range dependence information. In addition, the Multilayer 

Perceptron (MLP) has limited capabilities in handling complex nonlinear relationships and has the 

"black box" problem. 

Based on the above issues, this paper proposes a new hybrid architecture, ResNetKAN1D. By 

introducing a dual attention mechanism into the residual network, including channel attention and 

spatial attention, it greatly solves the problem of the difficulty in simultaneously capturing the features 

of seismic signal in both the temporal and spatial dimensions. At the same time, the Kolmogorov-

Arnold Network (KAN) is adopted to replace the Multilayer Perceptron (MLP), which avoids the 

"black box" problem of the MLP and improves the ability of nonlinear modeling. The contributions 

of this architecture are followings:    

(ⅰ) Incorporate dual attention mechanisms to enhance weights for critical regions and channels, 

improving sensitivity to key features. 

(ⅱ) Replace traditional MLP with KAN, creating a hybrid architecture of residual network and 

KAN. This marks the first application of KAN in seismic signal classification. 

(ⅲ) Evaluate the proposed model on the Stanford Earthquake Dataset (STEAD). Results show 

significant improvements over existing baseline models in accuracy (7.8% increase) and F1 score 

(0.11% increase). 

The remainder of this paper is organized as follows: Section 2 provides an overview of related 

work. Section 3 describes the proposed methodology. Section 4 presents and discusses the 
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experimental results. Section 5 examines the advantages and limitations of ResNetKAN1D. Section 

6 concludes this work. 

2. Related work  

The attention mechanism is widely applied in the field of deep learning. It enables the model to 

automatically focus on the key parts of the input data, improving the performance and efficiency of 

the model. [14] takes the residual neural network as the basic architecture and integrates the channel 

attention and spatial attention to optimize the network's attention to the key information of seismic 

waveform signals. In addition, researchers proposed the "Squeeze-and-Excitation" (SE) block [15], 

which adaptively recalibrates the channel feature responses by explicitly modeling the dependencies 

between channels; the Convolutional Block Module (CBAM) [16] infers the attention maps along the 

channel dimension and the spatial dimension and multiplies the attention maps with the input feature 

maps to achieve adaptive feature optimization. The attention mechanism effectively solves the 

problem of extracting key features of signals by enhancing the weights of key regions and channels 

of seismic signals and improves the classification accuracy. 

Inspired by the Kolmogorov-Arnold representation theorem, [17] proposed the Kolmogorov-

Arnold Network (KAN) as an alternative to the Multilayer Perceptron (MLP). KAN has no linear 

weights, and each weight parameter is replaced by a B-spline basis function, making KAN superior 

to MLP in terms of accuracy and interpretability [17]; [18] proposed combining KAN with various 

pre-trained convolutional neural network models and replacing the traditional MLP with KAN to 

improve classification performance. KAN enables interpretable nonlinear mapping, captures the 

complex nonlinear relationships between different features in seismic signal, and models and 

classifies seismic signal more accurately. It avoids the "black box" problem of MLP and improves 

the interpretability of the model.  

3. Proposed method   

The ResNetKAN1D model proposed in this paper is designed for efficient classification of seismic 

signal. As illustrated in Fig. 1, the model processes raw 3-channel waveform data of size 3×5000 as 

input data. It first undergoes an initial convolutional layer for preliminary feature extraction, followed 

by a pooling layer to reduce spatial dimensions. Next, the data passes through four groups of residual 

blocks (Layer1-Layer4), each composed of multiple residual units. Each unit contains convolutional 

layers, batch normalization layers, activation functions and dual attention modules. Following the 

residual blocks, an adaptive average pooling layer adjusts the feature maps to a fixed size. Finally, a 

KAN classification layer classifies the extracted features. 

 

Figure ⅼ: Architecture of ResNetKAN1D 
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3.1. Feature extraction   

The primary function of this model is to extract multi-level and multi-scale features from input data. 

Taking waveform data shaped [64, 3, 5000] as input data, it first passes through an initial 

convolutional layer. This transforms the feature map dimensions to [64, 64, 2500]. The output is 

subsequently processed by a batch normalization layer and activation function. Batch normalization 

stabilizes data distribution to accelerate model convergence, while the ReLU activation function 

introduces nonlinearity to enhance model expressiveness. Then the data passes through a pooling 

layer to reduce spatial dimensions and computational complexity while preserving essential features. 

After pooling, the feature map dimensions are reduced to [64, 64, 1250]. Next, the data is processed 

through four groups of residual blocks. Residual blocks are the core of this module, effectively 

addressing gradient vanishing and explosion issues in deep neural networks, enabling the model to 

learn more complex and hierarchical features. Each residual block comprises convolutional layers, 

batch normalization layers, ReLU activation functions, and dual attention modules.  

Residual connections facilitate direct information transmission between layers, avoiding 

information loss in deep networks. Specifically, within each residual block, the input signal is added 

to the output of the convolutional layer before passing through the activation function. The formula 

for the residual block is: 

 𝑦 = 𝐹(𝑥, {𝑊𝑖}) + 𝑥 (1) 

Where 𝑥 is input data, 𝐹(𝑥, {𝑊𝑖}) is the residual function representing the output after 𝑥 through 

residual layers, and{𝑊𝑖} are learnable parameters in the residual block. After processing through 

multiple residual blocks, the model obtains feature maps at different scales. An adaptive average 

pooling layer adjusts the feature maps to a fixed size, ensuring consistency of output feature vectors. 

Following this operation, the feature map shape becomes [64, 512, 1]. 

3.2. Dual attention module   

The dual attention module includes channel attention and spatial attention, with architectures shown 

in Figs. 2 and 3. 

 

Figure 2: The architecture of channel attention 

 

Figure 3: The architecture of spatial attention 
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3.2.1. Channel Attention (CA) 

Channel attention enhances or suppresses features in different channels. It uses global average 

pooling and global max pooling to obtain average and maximum features for each channel, 

respectively. These features are input into a sequence of fully connected (FC) layers and activation 

functions to generate channel attention weights. For input feature 𝑥, after average and max pooling 

to get 𝐺𝐴𝑃(𝑥) and 𝐺𝑀𝑃(𝑥), channel attention weights are calculated through FC layers. The input 

feature is multiplied by these weights to produce weighted channel features, which can be calculated 

as: 

 𝐶𝐴(𝑥) = 𝑥 ∙ 𝜎(𝑊2 ∙ 𝑅𝑒𝐿𝑈(𝑊1 ∙ [𝐺𝐴𝑃(𝑥); 𝐺𝑀𝑃(𝑥)])) (2) 

where 𝑊1 and 𝑊2 are weight matrices of the first and second FC layers, and 𝜎 is the Sigmoid 

activation function. 

3.2.2. Spatial Attention (SA) 

Spatial attention focuses on the importance of signal positions within the input data. It performs 

average and max pooling along the channel dimension to obtain average and max feature maps, 

denoted as 𝑀𝑒𝑎𝑛(𝑥) and 𝑀𝑎𝑥(𝑥), respectively. These maps are concatenated along the channel 

dimension and input into a convolutional layer to generate spatial attention weights. The input feature 

is multiplied by these weights to achieve weighted spatial features, as described by the following 

equation: 

 𝑆𝐴(𝑥) = 𝑥 ∙ 𝜎(𝐶𝑜𝑛𝑣([𝑀𝑒𝑎𝑛(𝑥);𝑀𝑎𝑥(𝑥)])) (3) 

where 𝐶𝑜𝑛𝑣 represents the convolution operatio.  

After processing by the dual attention module, features are optimized in both channel and spatial 

dimensions, thereby enhancing features critical for classification. 

3.3. KAN classification layer   

This paper introduces a KAN classification layer utilizing B-spline basis functions to replace MLP. 

B-spline basis functions are piecewise polynomial functions characterized by local support and 

smoothness. Compared to traditional neurons, they provide more flexible and interpretable nonlinear 

mappings, avoiding "black box" issue of MLP. 

 

Figure 4: The architecture of KAN 

The KAN classification layer consists of multiple KANLinear layers, each contains a base linear 

layer and a piecewise polynomial layer. The base linear layer performs initial processing of input 

features through linear transformation, while the piecewise polynomial layer employs B-spline basis 

functions for further nonlinear transformation to enhance model expressiveness. In a KANLinear 

layer, the input features are first processed by the base activation function SiLU, which can be 

calculated as: 

 𝑆𝑖𝐿𝑈(𝑥) = 𝑥 ∙ 𝜎(𝑥) (4) 
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Meanwhile, the input features are also used to calculate B-spline basis functions. For each input 

feature, the model checks whether it lies between two adjacent reference points in the predefined grid. 

If so, it is marked as "qualified", and these results are converted to the same data type as the input to 

derive the basis functions, which are then updated using a recursive formula. The calculation formula 

for the basis function is: 

 𝑦𝑏𝑎𝑠𝑒 = ((𝑥 ≥ 𝐺𝑟𝑖𝑑[: , ∶ −1])&(𝑥 < 𝐺𝑟𝑖𝑑[: ,1: ])). 𝑡𝑜(𝑥. 𝑑𝑡𝑦𝑝𝑒) (5) 

where 𝐺𝑟𝑖𝑑 represents reference point information.  

The piecewise polynomial layer performs calculations using the basis functions and piecewise 

polynomial weights. After reshaping the B-spline basis functions and weights into appropriate forms, 

a linear transformation is applied to obtain the output 𝑦𝑠𝑝𝑙𝑖𝑛𝑒. Finally, the output of the KANLinear 

layer is obtained by summing the outputs of the base linear layer and piecewise polynomial layer, 

which can be calculated as: 

 𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑦𝑏𝑎𝑠𝑒 + 𝑦𝑠𝑝𝑙𝑖𝑛𝑒 (6) 

The output of each KANLinear layer serves as input to the next layer. The output dimension of the 

last layer corresponds to the number of classification categories. The Softmax function is applied to 

the last layer's output to convert it to a probability distribution, and argmax is used for class prediction: 

category 0 represents noise signal, and category 1 represents seismic signal. 

4. Experiments   

4.1. Dataset   

The Stanford Earthquake Dataset (STEAD)[19] is used for experiments, which is a global seismic 

dataset designed for seismic signal processing and AI applications, containing 6,800 earthquake 

events and 5,200 noise events. The dataset is divided into training, validation, and test sets at an 8:1:1 

ratio. Data preprocessing includes standardization, P-wave alignment, and random cropping of 50-

second signal. 

4.2. Comparison with baseline models   

Several baseline models are selected as baselines, including ResNet18[20], 1D-CNN[21], AlexNet-

1D[22], VGG11-1D[23], and Transformer [24]. These models represent distinct types of deep 

learning architectures and have been widely applied in seismic signal classification. To ensure 

fairness and comparability, all baseline models and ResNetKAN1D use the same preprocessing 

methods and are trained and tested on the STEAD dataset. Table. 1 lists the values of some critical 

hyper-parameters. Multiple evaluation metrics are used, including Accuracy (Acc), Precision, Recall, 

and F1-score, which are defined as: 

 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (7) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9) 

 𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (10) 
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Table 1: Values of some critical hyper-parameters 

Parameters Values 

Optimizer AdamW Optimizer 

Learning rate 0.0001 

Weight decay coefficient 0.001 

Batch size 64 

Patience value 10 

Grid size 

Order of Piecewise Polynomials 

Grid Range 

5 

3 

[-1,1] 

 

The comparison results between ResNetKAN1D and baseline models are shown in Table 2. 

Table 2: Benchmark model comparison 

Model Acc(%) Precision Recall F1 

1D-CNN 84.5±0.3 0.82 0.81 0.815 

AlexNet-1D 82.1±0.4 0.79 0.78 0.785 

VGG11-1D 87.2±0.3 0.85 0.84 0.845 

ResNet18 90.3±0.2 0.88 0.87 0.875 

Transformer 89.4±0.4 0.86 0.85 0.855 

ResNetKAN1D 96.1±0.2 0.95 0.96 0.955 

 

As shown in Table. 2, the ResNetKAN1D model demonstrates significant superiority over all 

baseline models across all evaluation metrics. In terms of accuracy (Acc), it achieves 96.1 ± 0.2%, 

surpassing the second-best model, ResNet18 (90.3 ± 0.2%), by a notable margin of 5.8%. This 

indicates that ResNetKAN1D exhibits higher overall classification correctness. Regarding precision, 

ResNetKAN1D attains a value of 0.95, outperforming ResNet18 (0.88) by 0.07. This improvement 

suggests that ResNetKAN1D achieves a higher proportion of true positives among predicted positives, 

thereby reducing misclassification errors. As for recall, ResNetKAN1D achieves 0.96, significantly 

exceeding ResNet18's 0.87 by 0.09. This demonstrates the enhanced capability of model to identify 

all positive samples effectively. Furthermore, the F1 score, which represents the harmonic mean of 

precision and recall, reaches 0.955 for ResNetKAN1D, compared to 0.87 for ResNet18, the highest 

among the baseline models. This result underscores the superior balance between precision and recall 

achieved by ResNetKAN1D, highlighting its robust overall performance. 

4.3. Ablation study   

Ablation experiments evaluate the contribution of each module in ResNetKAN1D. Using 

ResNet18+MLP as the baseline, we incrementally add channel attention, spatial attention, and KAN 

modules, or remove them from the full model, and observe performance changes. Results are shown 

in Table. 3. 

Table 3: Result of ablation study 

Configuration Acc(%) Δ vs Full Model(%) F1 

Baseline(ResNet18 + MLP) 88.7 -7.8↓ 0.85 

+ Channel Attention 92.3 -4.2↓ 0.91 

+ Spatial Attention 91.8 -4.7↓ 0.90 

Dual Attention Only 93.9 -2.6↓ 0.93 

Dual Attention + KAN 96.5 - 0.96 

KAN Only 90.1 -6.4↓ 0.88 

Remove CA from Full Model 94.2 -2.3↓ 0.94 

Remove SA from Full Model 95.0 -1.5↓ 0.95 

Proceedings of  CONF-SEML 2025 Symposium: Machine Learning Theory and Applications 
DOI:  10.54254/2755-2721/158/2025.TJ23470 

143 



 

 

The channel attention mechanism precisely focuses on important feature channels, enabling the 

model to extract effective information. Taking the baseline model (ResNet18 + MLP) as a reference, 

its accuracy is 88.7%, with a change of -7.8% compared to the full model, and the F1-score is 0.85. 

When the channel attention mechanism is introduced, the accuracy increases to 92.3%, and the F1-

score rises to 0.91. Removing the channel attention mechanism from the full model, the accuracy 

drops to 94.2%, with a change of -2.3% compared to the full model, and the F1-score decreases to 

0.94.The results indicate that the channel attention mechanism can better capture key features when 

dealing with seismic signal, which strongly validates the effectiveness of the channel attention 

module in the model. 

The spatial attention mechanism helps the model better capture the spatial relationships in the 

image and the location information of objects, enabling the model to process the input data more 

comprehensively. After adding the spatial attention mechanism to the baseline model, the accuracy 

of the model reaches 91.8%, and the F1-score is 0.90. When the spatial attention mechanism is 

removed from the full model, the accuracy drops to 95.0%, with a change of -1.5% compared to the 

full model, and the F1-score decreases to 0.95. This result shows that the introduction of the spatial 

attention mechanism improves the performance of the model, fully demonstrating the usefulness of 

this module in the model. 

The dual attention mechanism demonstrates a better performance improvement effect compared 

to a single attention mechanism. When only the dual attention mechanism is used, the accuracy of the 

model reaches 93.9%, which is higher than that of a single attention mechanism. The two attention 

mechanisms complement each other, enabling the model to process seismic signal more 

comprehensively and further enhancing the model's performance. This verifies the effectiveness and 

advantages of the dual attention mechanism within the model.  

By adding the Kolmogorov-Arnold Network (KAN) on the basis of the dual attention mechanism, 

that is the full model, the accuracy of the model reaches the highest level of 96.5%, and the F1-score 

is 0.96. This result clearly shows that the combination of KAN and the dual attention mechanism has 

a significant effect on improving the performance of the model. When KAN is used alone, the 

accuracy of the model is 90.1%, which is higher than that of the baseline model, indicating that KAN 

plays a certain role in improving the performance of the model. The experimental results strongly 

verify the effectiveness of the KAN module in enhancing the performance of the model. 

5. Discussion   

The ResNetKAN1D hybrid architecture proposed in this study provides an innovative and effective 

solution for seismic signal classification. By integrating dual attention mechanisms into a deep 

residual neural network and replacing MLP with KAN layers, the model automatically focuses on 

key features in seismic signal and enhances nonlinear modeling capabilities. On the STEAD, it 

achieves an accuracy of 96.1%, precision of 0.95, recall of 0.96, and F1-score of 0.955, outperforming 

baseline models. The ResNetKAN1D architecture holds considerable promise for earthquake early 

warning systems, as its high classification accuracy can reduce false alarms and improve reliability. 

However, the current implementation is limited to single-task classification. Future research should 

focus on extending the model to multi-task scenarios, such as simultaneous magnitude estimation and 

hypocenter localization, through architectural refinements or multi-task learning frameworks. 

Additionally, optimizing the computational efficiency of the KAN module will be critical for practical 

deployment in real-time systems. 
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6. Conclusion   

This paper introduces a novel ResNetKAN1D hybrid architecture for seismic signal classification, 

integrating dual attention mechanisms into residual networks and incorporating KAN layers. This is 

the first application of KAN in the domain of seismic signal classification. To address persistent 

challenges such as noise interference and feature extraction difficulties, the model employs residual 

blocks enhanced with dual attention mechanisms to improve key feature selection and leverages KAN 

layers to enhance nonlinear modeling capabilities. Experimental results on the STEAD demonstrate 

the model's superior performance, significantly outperforming baseline models in key metrics such 

as accuracy and F1-score. Ablation studies further validate the contributions of each module, 

confirming their effectiveness in improving overall model performance. The ResNetKAN1D exhibits 

considerable potential for applications in earthquake early warning systems and geological research.  
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