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Abstract: The integration of Transformer architectures into Deep Reinforcement Learning 

(DRL) has recently gained significant attention due to its potential to enhance sequential 

decision-making and representation learning. This paper presents a structured review of key 

technical foundations, including the principles of DRL, essential components of Transformer 

models, and their integration potential. Transformer-based DRL methodologies are 

categorized into three major areas: single-modal sequential decision-making, cross-modal 

fusion architectures, and efficiency optimization techniques. These approaches demonstrate 

the capacity of Transformers to model long-range dependencies, process diverse input 

modalities, and improve training stability and sample efficiency. Applications in data science 

are also examined, with a particular focus on financial trading, healthcare decision support, 

and recommendation systems, showcasing the practical utility of these hybrid approaches. 

Despite these advancements, notable challenges persist, such as algorithmic complexity, 

theoretical gaps, and ethical and practical considerations. The paper concludes with a 

discussion on future directions, emphasizing the need for more interpretable models, efficient 

training strategies, and responsible deployment of Transformer-enhanced DRL systems.  

Keywords: Transformer Architectures, Deep Reinforcement Learning (DRL), Multimodal 

Data Fusion, Sample Efficiency, Long-Term Decision-Making. 

1. Introduction 

The recent advancements in deep reinforcement learning (DRL) have enabled remarkable successes 

in various domains, from game playing to robotics. At the core of these breakthroughs lies the 

theoretical framework of Markov Decision Processes (MDP), which models decision-making 

environments where an agent interacts with its surroundings to maximize expected cumulative 

rewards. However, traditional DRL architectures often face significant limitations in terms of sample 

efficiency, temporal credit assignment, and scalability. These challenges have spurred the 

development of novel methods that seek to overcome the inherent shortcomings of conventional DRL 

models. 

One such development is the integration of Transformer architectures into DRL. Transformers, 

originally introduced for natural language processing, leverage the self-attention mechanism to 

process sequential data in parallel, capturing long-range dependencies more effectively than recurrent 

neural networks (RNNs). This has led to significant improvements in the ability of DRL models to 
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handle complex, high-dimensional tasks. The incorporation of Transformers in DRL systems 

addresses several critical challenges, including the modeling of global temporal dependencies, the 

integration of heterogeneous data streams, and the optimization of sample efficiency in environments 

with sparse rewards. 

The combination of Transformers and DRL has resulted in innovative methodologies such as the 

Decision Transformer, which redefines reinforcement learning as a conditional sequence modeling 

problem. This paradigm shift allows for the direct conditioning of actions based on return-to-go (RTG) 

values, facilitating a more sample-efficient learning process. Additionally, Transformer-based models 

like the Trajectory Transformer and Decision Transformer have demonstrated significant 

improvements in both performance and scalability, particularly in environments where traditional 

methods struggle. By utilizing the self-attention mechanism, these models capture long-term 

dependencies across trajectories, enabling them to better plan for future outcomes and optimize 

actions over extended time horizons. 

Moreover, the integration of multimodal data has become an essential feature in modern decision-

making systems. Transformer-based architectures excel in this domain by allowing the fusion of 

multiple types of data, such as visual, textual, and sensor data, through cross-attention mechanisms. 

This capability has found applications in fields ranging from healthcare to autonomous driving, where 

the ability to process and integrate diverse data streams is crucial for making informed decisions. The 

application of these models has been shown to improve diagnostic accuracy, enhance decision-

making in industrial control systems, and provide more personalized recommendations in various 

domains. 

Despite these advancements, several challenges remain. The quadratic complexity of self-attention 

mechanisms limits the scalability of Transformer-based DRL models, especially for long-horizon 

tasks. Additionally, issues related to exploration, generalization, and causality need further 

investigation to ensure the robustness and adaptability of these models in real-world applications. 

Future research will need to focus on overcoming these challenges to fully realize the potential of 

Transformer-augmented DRL systems in diverse, high-stakes decision-making environments. 

2. Technical background 

2.1. Foundations of deep reinforcement learning 

Deep Reinforcement Learning (DRL) is grounded in the theoretical framework of Markov Decision 

Processes (MDP), formally defined by the tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾)[1]. The agent’s goal is to learn an 

optimal policy 𝜋(𝑎|𝑠) that maximizes expected cumulative rewards via environmental interactions. 

Two primary approaches in modern DRL are utilized. 

First is Value-based methods (e.g., DQN) utilize Q-learning with neural network approximation 

[2]: 

 (𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑟𝑡 + 𝛾𝑚𝑎𝑥
𝑎

 𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] (1) 

Second, is policy gradient methods (e.g., PPO) directly optimize policies via gradient ascent [3]: 

 ∇𝜃𝐽(𝜃) = 𝔼[∇𝜃 log 𝜋𝜃(𝑎|𝑠)𝐴(𝑠, 𝑎)] (2) 

Despite breakthroughs in specific areas like game playing, traditional DRL architectures exhibit 

three key limitations. 

First is temporal credit assignment struggles with delayed sparse rewards [1]. 

Second is Fixed-length state representations inadequately model complex real-world observations 

[4]. 

Third sequential processing in recurrent networks creates computational bottlenecks [5]. 
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2.2. Transformer architecture essentials 

The Transformer model revolutionized sequence modeling through its attention mechanism, 

incorporating core computational components. 

Scaled dot-product attention [6]: 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉 (3) 

Multi-head attention enables the parallel capture of diverse relational patterns [7]. 

 𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊𝑂 (4) 

Key architectural innovations include sinusoidal positional encoding for sequence order 

preservation and layer normalization and residual connections for network stability [6,7]. 

2.3. Synergistic integration potential 

The Transformer-DRL integration addresses traditional limitations through three mechanisms. 

First is Global temporal modeling the self-attention layers establish direct dependencies between 

distant states [8]. For trajectory 𝜏 = (𝑠1, 𝑎1, … , 𝑠𝑇), attention weight 𝛼𝑖,𝑗 quantifies state 𝑠𝑗 influence 

on decision-making at 𝑠𝑖. 

The second is multimodal fusion. The cross-attention modules enable unified processing of 

heterogeneous data streams [9]:   

 𝑍 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄 = 𝑊𝑄ℎ𝑑, 𝐾 = 𝑊𝐾𝑣𝑚, 𝑉 = 𝑊𝑉𝑣𝑚) (5) 

Third is sample-efficient learning the Decision Transformer achieves trajectory-level optimization 

via return-to-go (RTG) conditioning [10]: 

 𝑎𝑡 = 𝜋(𝑅𝑇𝐺𝑡, 𝑠𝑡, 𝑎𝑡−𝑘:𝑡−1) (6) 

3. Transformer-based DRL methodologies 

3.1. Single-modal sequential decision-making 

The integration of Transformer architectures into single-modal deep reinforcement learning (DRL) 

has fundamentally redefined sequential decision-making by transcending the Markov assumption 

inherent in traditional methods. The Decision Transformer [10], a seminal framework, reimagines 

reinforcement learning as a conditional sequence modeling problem. Drawing inspiration from the 

GPT paradigm [6], it processes trajectories 𝜏 = (𝑠1, 𝑎1, … , 𝑠𝑇)through causal self-attention masks to 

enforce temporal causality. By conditioning actions on the return-to-go (RTG) metric �̂�𝑡 =

∑ 𝛾𝑡′−𝑡𝑇
𝑡′=𝑡 𝑟𝑡′ , the model employs maximum likelihood estimation to autoregressively predict 

optimal actions: 

 𝐿𝑀𝐿𝐸 = − ∑  𝑇
𝑡=1 log 𝜋𝜃(𝑎𝑡|�̂�𝑡, 𝑠𝑡, 𝑎<𝑡) (7) 

This approach tokenizes states, actions, and RTG values into a unified sequence, enabling seamless 

integration with pretrained language models [11]. For instance, initializing the model with GPT-2 

weights [12] accelerates convergence by 19% in robotic manipulation tasks, as the pretrained 

embeddings capture universal temporal dependencies. 

Empirical evaluations reveal a 32% improvement in sample efficiency over Proximal Policy 

Optimization (PPO) [3] in sparse-reward environments like Montezuma’s Revenge. This advantage 

stems from the Transformer’s ability to model multi-step dependencies, which traditional recurrent 
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architectures (e.g., LSTMs) struggle to capture due to their sequential processing nature. Theoretical 

analyses further demonstrate that self-attention implicitly encodes state transition probabilities 

𝑃(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), allowing model-free agents to approximate model-based planning. 

The Trajectory Transformer [13] extends this paradigm by introducing uncertainty-aware planning. 

By integrating Gaussian process approximations into the attention mechanism [14], it dynamically 

refines action sequences through iterative uncertainty quantification. In Mujoco locomotion tasks, 

attention weights between state 𝑠𝑡 and historical states 𝑠𝑡−𝑘 exhibit strong correlation (𝑟 = 0.78) with 

the true physical influence of past states on current dynamics. This capability reduces regret by 19% 

compared to model-based RL baselines in robotic manipulation tasks, showcasing the synergy 

between probabilistic reasoning and attention-based sequence modeling. 

3.2. Cross-modal fusion architectures 

Modern decision-making systems increasingly demand the integration of heterogeneous data 

streams—a challenge inadequately addressed by traditional DRL’s fixed-dimensional state 

representations. Transformer-based architectures address this challenge through hierarchical attention 

fusion, which consists of two key stages: 

Modality-Specific Encoding: Domain-specific encoders project different input types into a shared 

latent space. For visual data, architectures such as Vision Transformers (ViTs) or ResNet-50 are 

employed to extract spatial features. For textual data, BERT processes the inputs, while in 

autonomous driving systems, LiDAR point clouds are encoded using PointNet++. Traffic sign images 

are also processed using ViTs. These encoders preserve the unique semantics of each modality while 

aligning their dimensionalities to facilitate effective cross-modal interaction [15]. 

Cross-Attention Fusion: The fusion layer dynamically aligns the modalities through cross-

attention mechanisms. Specifically, the decision-state embeddings ℎ𝑑  and multimodal features 𝑣𝑚 

are combined, with the cross-attention operation represented as: 

 𝑍 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
(𝑤𝑄ℎ𝑑)(𝑤𝐾𝑣𝑚)𝑇

√𝑑𝑘
) 𝑊𝑉𝑣𝑚 (8) 

This mechanism adaptively assigns weights to the importance of each modality. For instance, in 

rare disease diagnosis, clinical notes may receive 2.3 times higher attention weights compared to lab 

values, highlighting their critical influence on decision-making. 

Clinical Decision Transformers [16] integrate electronic health records (tabular data), MRI scans 

(visual), and clinical notes (textual) to predict treatment sequences. On the MIMIC-IV dataset [17], 

these models show a 27% improvement in sepsis prediction accuracy compared to CNN-RNN hybrids. 

Attention heatmaps provide interpretable cross-modal correlations, such as linking platelet count 

trends in lab data to hemorrhagic patterns in brain scans. Similarly, Multimodal Industrial 

Transformers [18] fuse sensor time-series, maintenance logs, and CAD schematics for predictive 

maintenance. In semiconductor manufacturing, this approach reduces equipment failure rates by 41% 

by identifying latent correlations between vibration sensor data and historical failure logs. The 

architecture utilizes the Perceiver framework [9] to manage high-dimensional inputs while 

maintaining sub-quadratic complexity through iterative cross-attention. 

For asynchronous data streams (e.g., millisecond-level sensor data versus minute-level logs), the 

Asynchronous Multimodal Transformer [19] introduces learnable temporal positional encoding (TPE) 

defined as: 

 𝑇𝑃𝐸(𝑡) = ∑  𝑑
𝑖=1 𝜔𝑖 ⋅ sin (

𝑡

𝜏
𝑖

1
𝑑

) (9) 

Proceedings of  CONF-SEML 2025 Symposium: Machine Learning Theory and Applications 
DOI:  10.54254/2755-2721/158/2025.TJ23481 

191 



 

 

where 𝜔𝑖 and 𝜏𝑖 are trainable parameters. This mechanism reduces temporal misalignment errors by 

41% in industrial control systems, demonstrating the critical role of time-aware attention in 

multimodal DRL. 

3.3. Efficiency optimization techniques 

The quadratic complexity 𝒪(𝑇2) of standard self-attention [6] remains a critical bottleneck for long-

horizon DRL tasks. Recent advancements adopt three synergistic strategies: 

Sparse Attention Mechanisms. Block-Sparse Attention Restricts query-key interactions to 

localized blocks, reducing memory usage by 63% in 10,000-step financial trading tasks [20]. The 

optimal block size 𝐵 is determined via: 

 𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐵

 [ℒ(𝐵) + 𝜆 ⋅ 𝐹𝐿𝑂𝑃𝑠(𝐵)] (10) 

where ℒ is task loss and 𝜆 a regularization coefficient. 

Learnable Sparsity Prunes low-attention edges through differentiable masks, achieving 89% 

sparsity without performance loss [21]. The masking threshold 𝛼 adapts via gradient descent: 

 𝛼𝑡+1 = 𝛼𝑡 − 𝜂∇𝛼𝐿𝑠𝑝𝑎𝑟𝑠𝑒 (11) 

enabling dynamic computation graphs tailored to task complexity. 

Memory-Efficient Training. Gradient Checkpointing reduces GPU memory consumption by 48% 

through selective recomputation of attention activations during backpropagation [22]. This technique 

enables training sequences 3× longer on equivalent hardware, critical for genomic analysis of 250k-

length DNA sequences. Mixed-Precision Training leverages FP16/FP32 hybrid precision to 

accelerate attention computations while maintaining numerical stability. 

Hierarchical Chunking. The Local-Global Attention processes sequences in chunks with 

intra/inter-chunk attention [23]. For genomic data analysis, chunk size 𝐶 follows 𝐶 ∝ √𝑇, balancing 

memory and performance. This approach achieves linear scaling for DNA sequences while preserving 

91% of vanilla Transformer performance. 

4. Applications in data science 

Transformer-based deep reinforcement learning (DRL) methods have shown significant promise 

across data science domains that involve sequential, multimodal, and high-stakes decision-making. 

Their capacity for global temporal modeling, flexible fusion of diverse modalities, and interpretability 

makes them particularly suitable for applications in financial trading, healthcare, and 

recommendation systems. 

4.1. Financial trading 

Financial markets are complex and dynamic systems where timely and accurate decision-making is 

paramount. Traditional DRL approaches often struggle with processing both numerical time-series 

and textual sentiment data simultaneously. To address this, Li et al. introduced a Transformer-DRL 

architecture that integrates historical price movements with real-time financial news sentiment for 

portfolio optimization [24]. Their framework employs modality-specific encoders and a cross-

attention fusion layer to align asset features and textual cues before action generation. Experiments 

on DJIA and NASDAQ portfolios revealed a 15.2% improvement in Sharpe ratio over LSTM-based 

baselines. 

Beyond portfolio allocation, Transformer-DRL has also demonstrated effectiveness in high-

frequency trading (HFT), where agents operate on millisecond-level order book data. Zhang et al. 
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implemented a lightweight Transformer variant capable of real-time inference from limit order book 

sequences [25]. The model incorporated a risk-sensitive reward function with Conditional Value at 

Risk (CVaR) regularization, leading to improved drawdown control and higher stability under volatile 

conditions. 

4.2. Healthcare decision support 

The ability of Transformer-DRL to model long-term dependencies makes it well-suited for clinical 

decision-making tasks such as diagnosis support and treatment planning. Razavian et al. proposed a 

multimodal decision transformer that fuses EHRs, imaging, and clinical notes to generate sequential 

treatment recommendations [26]. Applied to the MIMIC-IV dataset, their model achieved a 22% 

increase in diagnostic accuracy compared to RNN-based agents. 

In dynamic treatment regime (DTR) modeling, Liu et al. trained a Transformer-based agent to 

recommend chronic disease interventions over time. The system encoded full patient trajectories, 

including labs, vitals, and medications, and outperformed heuristic baselines by 12.7% in predicted 

long-term quality-adjusted life years (QALYs) [27]. Importantly, attention heatmaps offered 

clinically interpretable insights by identifying early indicators most influential for downstream 

decisions. 

4.3. Recommendation systems 

Personalized recommendation systems benefit from Transformer-DRL’s ability to align user behavior 

sequences with heterogeneous item features. Zhou et al. developed a vision-language 

recommendation transformer that integrates browsing logs, review text, and product images [28]. 

Trained on Amazon and Taobao datasets, their model improved NDCG by 19.4% compared to deep 

factorization baselines. 

In recommendation systems, one notable advancement is the integration of graph-based social 

information into Transformer-DRL frameworks. Platforms like streaming services or social e-

commerce apps often rely on user-user and item-item graphs to infer collaborative signals. Recent 

work combines Graph Neural Networks (GNNs) with Transformers in a hierarchical policy network: 

GNNs process relational structures while Transformer layers encode user behavior sequences. The 

resulting agent can adjust recommendations not only based on a user’s past behavior but also on the 

evolving interests of their social circle. This has led to measurable improvements in group-level 

recommendation metrics and retention rates. 

Scalability and efficiency also remain active areas of innovation. To deploy these models in large-

scale production environments (e.g., advertising platforms with billions of user interactions), model 

compression techniques such as knowledge distillation and low-rank attention have been introduced. 

These strategies reduce inference latency while preserving model performance, enabling real-time 

personalization on edge devices. 

Ultimately, the ability of Transformer-based DRL to operate across diverse, high-stakes, and data-

intensive settings makes it a powerful paradigm for next-generation intelligent decision systems. As 

research continues to advance along both algorithmic and systems dimensions, increasing adoption 

is expected in sectors where long-term sequential reasoning and multimodal integration are essential. 

5. Challenges and future directions 

Despite the remarkable progress Transformer-based deep reinforcement learning (DRL) has made in 

applied domains, its broader adoption remains limited by a number of open challenges. These span 

computational constraints, theoretical understanding, deployment feasibility, and ethical concerns. 
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Addressing these will not only improve system robustness and interpretability, but also help define a 

clear path for future innovation in scalable, trustworthy decision-making systems. 

5.1. Algorithmic challenges 

The quadratic complexity of the self-attention mechanism remains a major bottleneck for 

Transformer-DRL models operating in long-horizon environments. Although sparse attention and 

chunked processing have mitigated some of this burden, these solutions are often task-specific and 

require manual tuning. More adaptive mechanisms—such as dynamic attention allocation 

conditioned on context relevance—could enable more efficient use of computing and memory, 

making real-time DRL feasible on resource-constrained platforms. 

Another open issue is exploration. Transformers are naturally biased toward prominent patterns in 

input sequences, which may limit their ability to explore diverse trajectories in environments with 

sparse or deceptive rewards. This tendency can result in premature convergence to suboptimal 

policies. Future research could integrate stochastic exploration strategies or curiosity-driven intrinsic 

motivation directly into the attention architecture, enabling agents to learn more diverse behaviors. 

5.2. Theoretical gaps 

Current Transformer-DRL systems lack strong theoretical foundations regarding generalization. Most 

studies rely on empirical performance across benchmark datasets, with few offering guarantees on 

how well models will behave in out-of-distribution (OOD) states or under task transfer. Recent efforts 

in understanding generalization for sequence models provide a starting point, but much remains 

unexplored in the context of policy learning and reinforcement signals that are temporally sparse and 

noisy. 

Causal reasoning is another underdeveloped dimension. Many Transformer-based agents learn 

from spurious statistical correlations in multimodal datasets, especially when high-dimensional visual 

features dominate other modalities. This can lead to misinformed decisions in critical applications 

like healthcare or financial forecasting. Future work could incorporate structural causal models or 

counterfactual estimation techniques into the Transformer-DRL pipeline, allowing agents to learn 

more robust and explainable policies [29]. 

5.3. Ethical and practical concerns 

Bias in training data can propagate through attention mechanisms, resulting in unequal treatment of 

users or environments. For instance, in recommender systems, popular content may be consistently 

reinforced, while niche interests are systematically neglected. To mitigate these risks, fairness-aware 

objectives and debiasing attention regularization techniques must be further developed and adopted 

in practice. 

On the deployment side, inference latency and energy efficiency remain practical obstacles, 

particularly for edge or embedded applications. While model compression techniques such as pruning, 

quantization, and knowledge distillation are actively researched, their integration into DRL 

workflows is still in its infancy. Hardware-aware neural architecture search (NAS) for Transformer-

DRL could offer a path toward models that are both performant and deployable. 

5.4. Future directions 

Multiscale Temporal Reasoning: One promising direction is enabling Transformers to simultaneously 

model short-term decisions and long-term goals through multi-timescale attention. This is particularly 
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relevant for tasks like portfolio optimization, autonomous driving, or healthcare planning, where short 

actions accumulate toward long-horizon outcomes. 

Unified Multimodal Agents: As data modalities become increasingly diverse, future Transformer-

DRL systems should evolve into generalist agents capable of processing visual, textual, tabular, and 

sensor data within a single unified policy framework. Advances in cross-attention fusion and modular 

encoders will be key to supporting this transition. 

LLM-DRL Integration: Recent breakthroughs in large language models (LLMs) suggest 

opportunities for combining natural language understanding with decision-making capabilities. 

Integrating pretrained LLMs into DRL systems may allow for instruction-following agents that 

understand abstract task definitions and leverage commonsense reasoning during policy optimization. 

Causally-Aware Transformers: Embedding causal inference capabilities into the Transformer 

architecture will enable agents to distinguish correlation from causation in decision contexts. This 

could involve attention modules that learn over causal graphs or policy gradients guided by 

counterfactual simulations. Such models would be especially valuable in domains requiring strong 

guarantees of safety and interpretability. 

Green Reinforcement Learning: As Transformer-DRL models grow in scale, so does their 

environmental footprint. Future architectures should include energy-aware regularization terms or 

budget-constrained training objectives. By optimizing for both performance and efficiency, 

researchers can align DRL progress with principles of sustainable AI. 

In summary, while Transformer-DRL has proven to be a transformative framework for sequential 

and multimodal decision-making, fully realizing its potential requires tackling both foundational and 

practical challenges. Future research at the intersection of efficiency, interpretability, generalization, 

and fairness will be instrumental in shaping the next generation of intelligent, responsible agents.  

6. Conclusions 

This paper has explored the transformative integration of Transformer architectures into DRL and the 

significant advancements it has brought to the field. Traditional DRL methods face considerable 

challenges in areas such as handling long-term dependencies, sample efficiency, and computational 

complexity. The Transformer, through its self-attention mechanism, effectively addresses these issues, 

enabling DRL models to perform more efficiently in complex environments. The integration of 

Transformers into DRL not only enhances performance on long-horizon tasks but also strengthens 

the ability to process heterogeneous data streams, making it highly promising for applications in fields 

such as healthcare, finance, and recommendation systems. 

While the Transformer-DRL architecture has shown substantial success across various domains, 

challenges remain, including the computational bottlenecks of self-attention mechanisms, insufficient 

generalization, and causal reasoning issues. Future research should focus on addressing these 

theoretical and practical concerns, exploring more efficient computational techniques, and improving 

model adaptability and stability across diverse tasks. Moreover, as the demand for multimodal data 

processing and long-term decision-making grows, the combination of Transformer and DRL holds 

great potential for high-stakes, complex decision-making tasks. 

In conclusion, the Transformer-DRL architecture represents a significant breakthrough in deep 

reinforcement learning and holds broad application potential. As technology continues to evolve and 

innovate, future Transformer-DRL models are expected to deliver even greater performance, driving 

progress in intelligent decision-making systems across a wide range of fields. 
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