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Abstract: Deep reinforcement learning (DRL), as an important branch of machine learning, 

has shown strong potential for application in complex environmental decision-making 

problems in recent years. This article systematically reviews the current application status 

and development trends of DRL in fields such as gaming and virtual environments, robot 

control, resource management, and healthcare. Through a comprehensive analysis of existing 

literature, this paper has summarized the technical roadmap and solutions of DRL in 

addressing core challenges such as high-dimensional state spaces, sparse rewards, and partial 

observability, including hierarchical reinforcement learning frameworks, mixed reward 

designs, and memory based reinforcement learning methods. Meanwhile, this article delves 

into the opportunities and challenges faced by cutting-edge research directions such as multi-

agent systems, security, and interpretability. Based on current research progress, possible 

paths for the future development of DRL have been proposed, including improving algorithm 

robustness, integrating interdisciplinary methods, and engineering considerations in practical 

deployment, and providing reference for the further development of deep reinforcement 

learning.  

Keywords: Deep reinforcement learning, Complex environment, Multi agent system, Sparse 
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1. Introduction 

In recent years, with the rapid development of artificial intelligence technology, reinforcement 

learning (RL) has shown great potential in many fields as a method of obtaining optimal decision 

strategies through interaction with the environment. Especially when deep learning techniques are 

introduced into reinforcement learning, Deep reinforcement learning (DRL) rapidly emerges, 

marking the birth of a new algorithmic paradigm. This combination not only fully utilizes the 

expressive power of deep neural networks in high-dimensional data, but also overcomes the 

limitations of traditional RL in handling large-scale state spaces, making decision-making problems 

in complex environments possible [1]. The rise of deep reinforcement learning began with the 

breakthrough of deep Q-networks (DQN), which achieved performance beyond traditional algorithms 

in multiple classical tasks by approximating Q-value functions using deep neural networks. Since 

then, various algorithms based on policy gradients, participant criticism, etc. have been proposed and 

continuously applied in games (AlphaGo, AlphaStar, and OpenAI Five), multi robot systems 

(collaborative path planning and dynamic task allocation) [2], energy management, and healthcare. 

Meanwhile, deep reinforcement learning not only demonstrates powerful decision-making abilities 
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in virtual environments, but also gradually permeates into complex real-world scenarios, providing 

new ideas for solving practical problems. However, complex environments often come with various 

challenges, such as high-dimensional state spaces, sparse rewards, partial observability, and dynamic 

changes. This not only makes the learning process exceptionally difficult, but also places higher 

demands on the algorithm's generalization ability and stability. For example, when faced with sparse 

rewards, agents often struggle to obtain sufficient positive feedback, resulting in slow convergence 

speed; How to accurately capture and remember key information in partially observable or constantly 

changing environments has become another urgent problem to be solved. 

This article aims to comprehensively review the current application status, key technologies, and 

future challenges of deep reinforcement learning in complex environments. Firstly, the basic concepts 

of reinforcement learning and the development history of deep reinforcement learning will be 

introduced, and its advantages and limitations in dealing with high-dimensional state spaces and 

sparse reward problems will be elaborated; Secondly, this article will also focus on discussing cutting-

edge technologies such as multi-agent collaboration, meta reinforcement learning, security, and 

interpretability, attempting to provide theoretical foundations and practical guidance for how to build 

more efficient, robust, and intelligent decision-making systems in the future. 

2. The fundamental theory of DRL 

2.1. Mathematical framework for reinforcement learning 

The theoretical basis of reinforcement learning is based on Markov Decision Process (MDP), which 

describes the interaction process between the agent and the environment through five elements: state 

space S, action space A, state transition probability P, reward function R, and discount factor γ. The 

core assumption of MDP is Markov property, which means that the future state depends only on the 

current state and action. The calculation of state value functions and action value functions based on 

the Bellman equation provides a mathematical foundation for reinforcement learning, while the 

limitations of traditional table methods in dealing with high-dimensional state spaces have promoted 

the combination of deep neural networks and reinforcement learning, forming a new paradigm of 

deep reinforcement learning [1, 3]. 

2.2. Core algorithms of deep reinforcement learning 

The core algorithm system of deep reinforcement learning mainly includes three representative 

methods: DQN approximates the Q-function through neural networks and introduces experience 

replay and target network mechanisms, effectively solving the limitations of traditional Q-learning in 

high-dimensional space; The strategy gradient method directly optimizes strategy parameters, which 

is particularly suitable for dealing with continuous action space problems; The actor critic algorithm 

cleverly combines the advantages of value function evaluation and strategy optimization, and 

constructs a more efficient reinforcement learning framework through the collaborative work of the 

Actor and Critic components. The improved versions derived from these basic algorithms, such as 

Asynchronous Advantage Actor-Critic (A3C) and Proximal Policy Optimization (PPO), further 

enhance the training efficiency and stability of the algorithms [1, 2, 4]. 

2.3. Extension techniques for deep reinforcement learning 

To improve the performance of deep reinforcement learning algorithms, researchers have developed 

multiple key technologies: experience replay and target network mechanisms effectively solve the 

problems of data correlation and training stability; The dual Q-learning method alleviates the problem 

of Q-value overestimation by decoupling the process of action selection and value evaluation; 

Proceedings of  CONF-SEML 2025 Symposium: Machine Learning Theory and Applications 
DOI:  10.54254/2755-2721/158/2025.TJ23483 

204 



 

 

Hierarchical reinforcement learning reduces the difficulty of solving complex problems through task 

decomposition strategies; And meta reinforcement learning enhances the algorithm's adaptability to 

new tasks. The collaborative development of these technologies greatly expands the application 

boundaries of deep reinforcement learning [1, 3, 4]. 

3. The application of DRL in complex environments 

From Figure 1, it can be seen that the application of dimension of state space is mainly for games, the 

application of real-time requirements is mainly for robots, and computational complexity and privacy 

sensitivity are mainly used in the field of healthcare. 

 
Figure 1: Overview of multi domain applications of DRL in complex environments (picture credit: 

original) 

3.1. Games and virtual environments 

DRL is driving a revolution in real-time interactive experiences in gaming and virtual environments. 

Intelligent systems represented by AlphaGo and AlphaStar have demonstrated the potential of DRL 

in complex strategic decision-making, while OpenAI Five has validated the possibility of multi-agent 

collaboration. These systems have achieved decision-making abilities beyond humans through the 

DRL algorithm, particularly excelling in complex strategy games. In real-time game streaming 

scenarios, DRL is used to dynamically optimize transmission bit rates to improve user experience 

quality (QoE). For example, Del Rio et al. proposed a multi site optimization framework based on an 

asynchronous dominance factor criticism algorithm, which reduces image blocks by 20% and data 

block loss by 15% in 5G virtualization environments by adjusting the bit rate in real-time [5]. In 

addition, DRL is also used in virtual environments to address the transmission challenges of high 

frame rate (HFR) video streams. By combining multiple access edge computing (MEC) and software 

defined network (SDN), DRL can dynamically adapt to network conditions to ensure low latency and 

high image quality. Current research is exploring the combination of DRL and computer vision 

technology to improve the accuracy of object recognition and interaction in virtual environments. 
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3.2. Robot control and automation 

In the field of robot control and automation, DRL is gradually becoming a key technology for solving 

complex decision-making problems. Researchers have made significant progress in applying DRL to 

various scenarios such as robot path planning, robot arm control, and autonomous driving. In terms 

of robot path planning, Liu et al. proposed a method based on multi-agent reinforcement learning, 

which can effectively handle obstacle avoidance problems in dynamic environments. This method 

significantly improves the success rate of long-distance navigation by decomposing the global path 

into local sub targets. The process structure is shown in Figure 2. The experimental results show that 

the navigation success rate of this method can reach over 99% in testing environments containing 

dynamic obstacles [6]. Robot arm control is another important application direction. The DRL 

algorithm, through end-to-end training, enables the robot arm to autonomously perform fine 

operations such as grasping and assembly, demonstrating stronger adaptability and robustness. 

Especially when dealing with unstructured environments, DRL methods can adjust control strategies 

in real-time to cope with sudden changes. The current research hotspots include how to improve the 

sampling efficiency of the DRL algorithm and enhance the system's generalization ability in real-

world environments. 

 

Figure 2: Hierarchical reinforcement learning framework diagram [6] 

3.3. Resource management and optimization 

In the field of energy and resource management, DRL provides innovative solutions for intelligent 

decision-making in dynamic pricing environments. Pokorn et al. proposed a household energy trading 

system based on the DQN algorithm, which autonomously optimizes the coordinated scheduling of 

photovoltaic power generation and battery energy storage by analyzing real-time electricity price 

(RTP) and time of use (TOU) modes. Research has shown that compared to traditional rule-based 

strategies, this approach can reduce energy costs by 47.66%. The core lies in designing a three-stage 

composite reward function, including battery state penalties, market price related rewards, and direct 

cost feedback [7]. In the scenario of grid level resource allocation, DRL achieves dynamic 

optimization by handling high-dimensional state spaces such as load demand, power generation 

output, and network topology. Typical applications include: microgrid power dispatch based on 

multi-agent reinforcement learning, balancing supply and demand relationships through distributed 

decision-making; Data center energy efficiency management, utilizing DRL to adjust computing load 

and cooling system power consumption in real-time. The current challenges mainly focus on 

improving sample efficiency and long-term strategy stability. 
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3.4. Medical and health 

DRL has demonstrated unique application value in the healthcare field. In terms of medical image 

analysis, DRL achieves efficient processing of high-resolution medical images through a serialized 

decision mechanism. Research has shown that compared to traditional supervised learning methods, 

DRL can reduce computational memory usage by 83% in lesion localization tasks. In personalized 

treatment, DRL systems based on strategic gradient algorithms such as PPO and DDPG can adjust 

treatment plans according to real-time physiological parameters of patients. For example, in the 

adjustment of diabetes insulin dose, the DRL model fine tuned the recommended dose through 

continuous action space output, and clinical trials showed that its control effect was better than that 

of the traditional PID controller (the time to reach the blood glucose standard increased by 22%) [8]. 

In addition, breakthroughs have been made in the application of DRL in surgical robot control. By 

combining imitation learning and reinforcement learning, robots can autonomously complete fine 

operations such as suturing and knotting, with an average operating error of less than 0.3mm [8]. 

4. The challenges and development directions of DRL in complex environments 

4.1. High dimensional state space and action space 

One of the core challenges of DRL is the problem of high-dimensional state space and action space. 

As the complexity of the environment increases, the number of combinations of states and actions 

grows exponentially, a phenomenon known as "state space explosion". For example, in autonomous 

driving tasks, intelligent agents need to process high-dimensional input data from cameras, LiDAR, 

and other sensors, while facing continuous control decisions, thus forming a very large state action 

space. To address this challenge, deep learning models such as Convolutional Neural Networks 

(CNNs) are widely used to extract low dimensional feature representations from high-dimensional 

raw inputs such as images and videos to reduce computational complexity. On the other hand, 

applying attention mechanisms in reinforcement learning can help agents focus on key state features. 

In terms of action space, continuous action problems are usually optimized using policy gradient 

based methods. Hierarchical RL is widely used in discrete action spaces to reduce the computational 

difficulty of each decision step by decomposing complex tasks into subtasks [9]. 

4.2. Sparse rewards and exploration problems 

Effective exploration in sparse reward environments is a key challenge in deep reinforcement learning. 

Taking the TriFinger robot cube manipulation task as an example, the sparse reward mechanism for 

target trajectory tracking makes it difficult for agents to obtain effective feedback through random 

exploration. The team proposed a hybrid reward design scheme that combines sparse xy plane 

position error rewards with dense z-axis height error rewards, and accelerates initial training by 

explicitly optimizing the height error rewards. At the same time, by replacing the xy coordinates with 

only the original z-coordinate target, the post experience replay (HER) mechanism has been improved, 

avoiding punishment for enhancing behavior due to target modification. This method increases the 

success rate of tasks in simulated training from 70% to over 90%. After introducing knowledge 

transfer (KT) technology, reusing learned localization strategies to initialize network parameters or 

guide experience collection significantly reduces ineffective exploration. In the extended task of cube 

direction control, this method reduced the average position deviation from 0.134 meters to 0.02 

meters and increased the direction deviation from 142 degrees to 76 degrees, verifying its 

effectiveness in sparse reward scenes. Figure 3 shows the success rate of sparse reward optimization 

[10]. 
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Figure 3: Comparison of sparse reward optimization techniques [10] 

4.3. Partial observability and uncertainty 

In complex environments, deep reinforcement learning also faces issues of observability and 

uncertainty. Partial observability stems from the fact that intelligent agents can only obtain local 

observations of the environmental state and cannot directly perceive the global state, which is 

particularly prominent in scenarios such as robot navigation and medical decision-making. For 

example, in human-machine collaboration systems, robots need to infer the intentions of human 

operators through limited sensor data, which increases the difficulty of decision-making due to the 

lack of information. Researchers propose using the POMDP framework to model partial observability, 

inferring hidden states through historical observation sequences, and combining empirical replay 

techniques to improve the accuracy of state estimation [11]. However, when the environment 

dynamics increase or observation noise increases, state estimation errors may accumulate, leading to 

strategy failure. Uncertainty includes two aspects: environmental randomness and model cognitive 

bias. The randomness of the environment, such as changes in traffic flow and fluctuations in patient 

physiological indicators, requires algorithms to have robustness; The uncertainty of the model arises 

from the deviation between the training data and the true distribution, which may lead to overfitting 

of the strategy. To address this issue, a Bayesian reinforcement learning framework is proposed, 

which treats policy parameters as random variables and quantifies uncertainty through variational 

inference [11]. 

4.4. Multi agent reinforcement learning 

Deep reinforcement learning faces the challenge of data privacy protection in multi-agent systems, 

and federated learning provides new ideas for solving this problem through distributed training and 

parameter aggregation (as shown in Figure 4). Research has shown that combining federated learning 

with deep reinforcement learning algorithms such as DQN, DDPG, and PPO can improve model 

performance while protecting data privacy. For example, the accuracy of federated DQN in Atari 

games increased by 39.9%, while the performance of federated DDPG in continuous control tasks 

improved by 80%. This fusion method not only solves the privacy leakage risk in multi-agent 

collaboration, but also improves learning efficiency through distributed training, providing feasible 

technical solutions for fields with strict privacy requirements such as autonomous driving and 

intelligent healthcare [12]. Future research can further optimize communication protocols, improve 

processing methods for nonindependent and identically distributed data, explore stronger privacy 
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protection mechanisms, and promote the practical application of federated reinforcement learning in 

complex multi-agent systems [12]. 

 

Figure 4: Privacy protection architecture for federated learning and DRL[12] 

4.5. Safety and interpretability 

In the application of deep reinforcement learning in financial markets, security and interpretability 

have become key challenges. On the one hand, although simulation environments such as 

PyMarketSim provide a secure testing platform for strategic training, avoiding direct risks in the real 

market, strategies still face potential security threats such as overfitting and market manipulation 

during deployment. Although PSRO and other methods can evaluate policy equilibrium, real-time 

risk monitoring mechanisms still need improvement. On the other hand, trading strategies driven by 

deep neural networks such as TRON agents have high expressive power, but their complex decision-

making process leads to insufficient interpretability, making it difficult to gain the trust of regulatory 

agencies and investors. In the future, it is necessary to explore new technologies such as neural 

differential equations to improve the transparency of models, or to combine rule-based models with 

deep reinforcement learning to enhance the interpretability of strategies while maintaining 

performance [13]. 

4.6. Integration of reinforcement learning and neuroscience 

The interdisciplinary research between deep reinforcement learning and neuroscience has injected 

new vitality into the development of this field. Neuroscience not only provides theoretical inspiration 

for deep reinforcement learning, but also verifies the effectiveness of the algorithm through 

experiments. Meanwhile, reinforcement learning simulates complex cognitive functions, such as 

model-based reinforcement learning, which simulates the ability of humans to construct cognitive 

maps. The combination of the two has promoted bidirectional progress: discoveries in neuroscience 

have facilitated algorithm innovation, such as distributed coding inspiring distributed reinforcement 

learning; The theoretical hypothesis was validated by reproducing neural phenomena through 

algorithms, such as using time difference models to predict animal learning behavior. In the future, it 

is necessary to further integrate neuroscience data to enhance the biological rationality of models, 

such as introducing motivational mechanisms in exploring the use of balance, or utilizing modular 

brain structures to enhance model adaptability, in order to promote the design of more brain like 

intelligent agents [14]. 

5. Conclusion 

This article provides a comprehensive overview of the current applications and challenges of DRL in 

complex environments. DRL has demonstrated remarkable success across diverse fields such as 
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gaming, robot control, resource management, and healthcare. By leveraging core algorithms like 

DQN, policy gradient methods, and actor-critic frameworks, DRL effectively addresses high-

dimensional state spaces, sparse rewards, and partial observability. Extension techniques such as 

hierarchical reinforcement learning, meta-reinforcement learning, and hybrid reward designs further 

enhance the adaptability and robustness of DRL systems. These advancements have enabled 

breakthroughs in tasks ranging from autonomous driving to personalized medical treatments, 

showcasing the transformative potential of DRL in real-world scenarios. However, significant 

challenges remain. The issue of data efficiency persists, particularly in environments with dynamic 

changes or limited feedback. Multi-agent systems introduce complexities related to coordination, 

privacy, and scalability, necessitating innovative solutions like federated learning. Safety and 

interpretability are critical concerns, especially in high-stakes domains such as healthcare and finance, 

where transparent and reliable decision-making is paramount. Additionally, the integration of 

interdisciplinary approaches, such as neuroscience-inspired mechanisms, offers promising avenues 

for improving the biological plausibility and adaptability of DRL models. For instance, insights from 

neural coding and cognitive mapping could refine exploration strategies and enhance model 

generalization. 
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