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Abstract: With the development of the automobile industry and artificial intelligence, 

autonomous driving is an important research topic and the future development trend, 

However, there are still defects in the decision-making ability of autonomous driving in the 

informed environment and the safe driving ability in complex environments. In order to solve 

this problem, based on the Proximal Policy Optimization (PPO) strategy of reinforcement 

learning, this study proposes two novel algorithms: Soft-constrained PPO and Hard-

constrained PPO to optimize the policy of safe reinforcement learning. Soft constraints mean 

that by introducing new assessment criteria, the reward function is modified. The hard 

constraint is to force the unsafe training to stop by setting the maximum risk control threshold. 

After giving the algorithm, a comparative experiment is carried out, and the three models are 

trained in the same environment (highway-V0). It is found that the new proposed algorithm 

not only improves the performance, but also effectively controls the unsafe behaviors in the 

autonomous driving environment, such as lane deviation and collision.  
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1. Introduction 

In recent years, with the rapid improvement of the automotive industry and artificial intelligence, 

automatic driving algorithms based on reinforcement learning have been widely reached and used. 

For example, Automatic Braking Systems (ABS), Lane-Keeping Systems (LKS), and Adaptive 

Cruise Control (ACC) are already used in driver assistance systems [1]. There are four important 

modules in autonomous driving, which are perception, planning, decision making and control [2]. 

The logic of the autonomous driving algorithm is that the vehicle analyzes the scene and environment 

through the information obtained by external sensors, such as GPS positioning and radar, and controls 

the specific modules of the car, such as the braking system, accelerator, transmission, etc., to realize 

the driving behavior of the car, including forward, reverse, lane change, overtaking, parking, etc 

[3][4]. The safety of autonomous driving is an important evaluation condition to consider the 

performance of algorithms, because it is directly related to the personal safety of drivers and 

passengers and their degree of trust in the autonomous driving system. 

Most of the existing autonomous driving algorithms use reinforcement learning methods for 

training. Reinforcement learning is an important branch of machine learning, and it is very close to 

human thinking [5]. In general, reinforcement learning is the process of using an agent, letting it 

interact with the environment, adjusting the next action based on feedback, and finally getting the 

optimal solution. Reinforcement learning has led to remarkable achievements in a variety of domains, 
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including economics [6], computer games [7], board games [8], linguistics [9] and robotics [10][11]. 

In reinforcement learning, in order to improve the safety performance of autonomous driving, the 

Safe reinforcement learning (safe RL) algorithm is defined to ensure that the agent can operate within 

a safe range [12]. 

Today's autonomous driving algorithms still have flaws. Firstly, most of the experimental data is 

trained from static data sets, which affects the ability to adapt to dynamic environments and 

continuous learning to some extent [13]. However, in the complex dynamic environment in reality, 

the existing autonomous driving algorithms are not enough to completely replace the role of the driver 

[14]. The decision difficulty in the simulation environment is very different from that in the high-

speed driving state. 

In this research paper, in order to improve the safety performance in autonomous driving, this 

study designed two safety reinforcement learning algorithms based on the Proximal Policy 

Optimization (PPO) algorithm, namely soft constraint PPO and hard constraint PPO, and designed a 

control experiment to test the performance of the algorithms. 

The structure of this paper is organized as follows: after giving the introduction, the second 

paragraph expounds on the basic theory of reinforcement learning, including the Markov decision 

process and Markov Decision Processes (MDP) based PPO algorithm logic. In the third paragraph, 

the methodology of the experiment was given, including the algorithm logic of soft constraint PPO 

and hard constraint PPO. Then, the next paragraph gives the experimental design, experimental 

conclusions and data analysis, and finally gives the conclusion. 

2. Related work 

2.1. Markov decision processes 

In reinforcement learning, Markov decision processes are used with high frequency [15]. A five-tuple 

(S, A, P, R, γ) can be used to describe a Markov decision process, respectively: S is a finite set 

representing the possible states in all environments. A is a finite set of actions representing all possible 

actions of the agent. P(s′ | s, a)  is a state transition probability function that illustrates the 

likelihood of moving from state s to state s’ after taking an action a. R(s, a) stands for reward function, 

providing the immediate feedback received after performing an action in the given stage.  R ∈
 [0,1) is the discount factor, which determines the persent value of future rewards. 

The decision process of MDP is dynamic, in the initial state, the agent chooses an action in A to 

execute, after execution, it obtains state S1 according to the state transition equation, and then 

continues to execute the next action, and repeats [16]. The long-term objective function is defined as 

follows. 

 J(π)  =  𝔼π [∑ γt∞
t=0 R(St,at )] (1) 

Markov decision processes (MDP) provide the theoretical foundation for mathematical 

formalization and provide the modeling structure for many policy optimization algorithms, such as 

Q-Learning and PPO. 

2.2. Proximal policy optimization 

The PPO algorithm belongs to one of the policy gradient methods, and its powerful function has been 

widely recognized and used as one of the benchmark algorithms in reinforcement learning [17]. 

Compared with the traditional policy gradient algorithm, PPO has an efficient and stable update 

mechanism, which can avoid the trap of large-scale and unstable policy update. 
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The core idea of PPO is to restrict the policy update within a “proximal” region, avoiding drastic 

changes that could lead to performance collapse. Rather than using complex trust region constraints, 

PPO introduces a clipped surrogate objective function: 

 Lclip(θ)  =  𝔼t[min ( rt(θ)At, clip(rt(θ), 1 − ϵ, 1 + ϵ)At)] (2) 

Here, the 𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡

|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡
|𝑠𝑡)

 is the probability radio between the new policies and the old, and  

is a function of an estimator of the advantage, reflecting the relative quality of an action at a given 

stage. The chip function is used to prevent the ratio from deviating too much from 1, aiming to ensure 

a conservative and stable policy. 

PPO is often used in conjunction with Generalized Advantage Estimation (GAE), which provides 

a trade-off between bias and variance in advantage computation: 

 𝐴𝑡 = ∑ (𝛾𝜆)𝑙𝑇−𝑡
𝑙=0 𝛿𝑡+𝑙 , 𝑤ℎ𝑒𝑟𝑒 𝛿𝑡 =  𝑟𝑡  +  𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡) (3) 

3. Methology 

Considering that in real-world high-risk task environments, such as autonomous driving, intelligent 

navigation, etc., optimizing the original reward function is not enough to ensure sufficient safety of 

the policy. In the case of high task complexity or insufficient exploration period, the agent may obtain 

high rewards by finding shortcuts, resulting in serious security risks. 

In order to solve this problem, this paper designed two different types of security constraint 

mechanisms based on the PPO framework, namely soft constraint PPO policy and hard constraint 

PPO policy. 

3.1. Soft-Constrained PPO 

For Soft-Constrained PPO policy, by modifying the form of the reward function, the unsafe behavior 

(e.g., collision, lane departure) is added to the total reward in the form of a penalty term. To be specific, 

Define the environment raw reward as R_base, The number of collisions as N_col, The number of 

deviations as N_dev, The penalty weights are set to be, respectively are λ_c and λ_d, and the fusion 

coefficient α ∈  [0, 1), so that the fixed reward function is shown as:  

 R_total = (1 − α) × R_base − α × (λ_c × N_col + λ_d ×  N_dev) (4) 

Here, α controls the weight between the task goal and the safety penalty. A small value of α 

encourages reward for the task, while a large value of α favors safe behavior. The reward function 

will be dynamically calculated at each time step as the basic reward signal in the optimization of the 

PPO policy.  

This algorithm does not need to modify the training environment, only by introducing a new 

penalty structure at the reward function calculation, it can realize the constraints on safe behavior. 

The algorithm is expressed as follows: 

Algorithm 1: Soft-Constrained PPO  

Input: Environment env, initial policy πθ, value function Vϕ, 

      balance factor α ∈ [0,1], collision penalty λc, deviation penalty λd, 

      total training iterations N 

 

Output: Trained policy πθ 
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1:  Initialize πθ and Vϕ 

2:  for iteration = 1 to N do 

3:      Collect trajectories { (st, at, rt, st+1) } using policy πθ 

4:      for each episode in trajectories do 

5:          Count safety indicators: 

6:              n_col ← number of collisions 

7:              n_dev ← number of deviations 

8:          for each transition (st, at, rt, st+1) do 

9:              r_base ← rt 

10:             safety_penalty ← λc * n_col + λd * n_dev 

11:             r_total ← (1 - α) * r_base - α * safety_penalty 

12:         end for 

13:     end for 

14:     Estimate advantages Ât using GAE and r_total 

15:     Update policy πθ via PPO objective with reward r_total 

16:     Update value function Vϕ using MSE loss 

17: end for 

3.2. Hard-Constrained PPO 

Compared with Soft-PPO, the hard-constrained policy adopts a more rigid control approach. Firstly, 

a safety threshold is set for the environment. Once the number of collisions or deviations in a certain 

episode exceeds the safety threshold, the environment will immediately terminate the current round 

and impose additional negative penalties, thereby explicitly punishing unsafe behaviors. This 

approach directly sets a hard boundary for the exploration space of the training policy and is suitable 

for scenarios with strict safety requirements, such as autonomous driving. 

Here, the maximum number of allowed collisions is defined as C_max, the maximum allowable 

number of deviations is defined as D_max, once the number of times in the current episode exceeds 

the threshold, the code to stop the environment is triggered. This strategy may inhibit part of the 

behavior of the agent in the early stage, but in the long run, it can greatly reduce the frequency of 

serious unsafe behavior, which is more practical in high-risk tasks. Here's a pseudo-code 

demonstration of the algorithm: 

Algorithm 2: Hard-Constrained PPO  

Input: Environment env, initial policy πθ, value function Vϕ, 

      collision threshold C_max, deviation threshold D_max, 

      penalty constants η_col, η_dev, total training iterations N 

 

Output: Trained policy πθ 

1:  Initialize πθ and Vϕ 

2:  for iteration = 1 to N do 

3:      Collect trajectories using policy πθ 

4:      for each episode in trajectories do 

5:          Initialize counters: n_col ← 0, n_dev ← 0 

6:          for each timestep t in episode do 

7:              Take action at ∼ πθ(st), observe rt, st+1 

8:              if collision occurs then 

9:                  n_col ← n_col + 1 

10:             end if 

11:             if deviation occurs then 
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12:                 n_dev ← n_dev + 1 

13:             end if 

14:              

15:             if n_col ≥ C_max or n_dev ≥ D_max then 

16:                 if n_col ≥ C_max then 

17:                     rt ← rt − η_col 

18:                 end if 

19:                 if n_dev ≥ D_max then 

20:                     rt ← rt − η_dev 

21:                 end if 

22:                 Mark episode as terminated 

23:                 break 

24:             end if 

25:         end for 

26:     end for 

27:     Estimate advantages Ât using GAE 

28:     Update policy πθ using PPO clipped surrogate objective 

29:     Update value function Vϕ using MSE loss with modified returns 

30: end for 

4.  Experiment 

4.1. Experimental design 

In order to verify the effectiveness of the proposed safety constraint reinforcement learning method, 

this study established a unified experimental platform in a multi-lane automatic driving simulation 

environment, and systematically compared three algorithms, namely the standard PPO algorithm, the 

hard constraint PPO algorithm and the soft constraint PPO algorithm. 

The simulation environment used in this experiment is the highway-v0 scenario provided by 

highweay-env, a highly dynamic simulation platform for intelligent transportation research, which is 

able to simulate the behavior of multiple vehicles driving coactively on highways. In this experiment, 

the agent is the master vehicle that is trained, and the rest of the vehicles interfere in the form of basic 

control mode. This environment has clear sources of risk, such as vehicle speed differences, vehicle 

action uncertainty, and vehicle density. 

The state space employs the "Kinematics" mode inherent in the environment. The observed state 

at each moment is a two-dimensional tensor of shape (10, 7), respectively indicating the kinematic 

information between the main vehicle and the nine vehicles ahead, including existence flags, 

coordinate positions, velocity vectors, and the cosine and sine of the direction angles. For adaptation 

to neural network modeling, this tensor is flattened into a 70-dimensional vector through a custom 

feature extractor and then input into the model. The action space is a discrete set, encompassing five 

fundamental strategic actions: maintaining, accelerating, decelerating, changing lanes to the left, and 

changing lanes to the right. Such a configuration is concise and lucid, facilitating the comparison of 

the selection differences of different strategies within the same strategic space. 

Based on this, PPO-Baseline will use the comparison group as a reference to observe the 

performance of the algorithm without security constraints. PPO-Soft adjusted the reward function by 

adding a penalty term, and PPO-HARD forced the termination behavior on unsafe trajectories by 

setting the maximum number of allowed collisions. Each algorithm adopts a unified network structure 

and training configuration, and controls variables to ensure fairness. Due to the problem of 

environment configuration, our strategy has two minor modifications, but they do not affect the 

impact of the strategy on safe driving. Firstly, the experiment adds a safe driving reward to all 

strategies to prevent falling into the trap of the optimal strategy. Second, deviation are not considered. 
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The convergence performance of the policy in reward was recorded at each stage of training, while 

considering the average reward, the average length, and the final visualization results were generated 

for analysis. 

4.2. Experimental design 

Aiming to ensure the stability of the training process and reproducibility of the experimental results, 

all experiments are conducted with a dixed random seed (SEED = 42). Additionally, a CUDA-

compatible GPU is used to accelerate training if available.The core hyperparameters and environment 

configurations are summarized in Table 1. 

Table 1: Experimental setup 

Algorithm settings 

Reinforcement learning 

algorithm 
PPO 

Total training steps  35000 

Discount factor(γ) 0.98 

Policy network architecture 
Two fully connected layers with 128 and 64 units respectively, 

using ReLU activation 

Learning rate  3e-4 

Batch size 256 

Rollout steps per update 1024 

Number of training epochs 

per update 
20 

Environment Configuration(highway-v0) 

Number of lanes 3 

Vehicle density 1.2 

Episode duration  100 simulation steps 

40 simulation steps 
Kinematics, including seven features for each vehicle (presence, x, 

y, vx, vy, cos(heading), sin(heading)) 

Collision penalty -3.0 

Right lane incentive +0.2 

High-speed driving 

incentive 
+0.8 

Lane change penalty -0.05 

Target speed range 25–33 m/s 

Off-road termination Enabled (True) 

PPO-Soft 

Collision penalty 

coefficient 
3.0 

Lateral deviation penalty 

coefficient: 
1 

Reward blending 

coefficient 
α = 0.3 

Reward adjustment 

formula 
R = (1 - α)·r - α·(collision_penalty + deviation_penalty) 

PPO-Hard 
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Maximum allowed 

collisions: 
1 

Rewards of collisions -10 

Rewards of no unsafy 

activity 
3 

4.3. Experimental result 

 

Figure 1: Result of PPO-Baseline (picture credit: original) 

 

Figure 2: Result of PPO-Soft (picture credit: original)  

 

Figure 3: Result of PPO-Hard (picture credit: original)  

Table 1: (continued) 
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Figure 4: Average episode length distribution (episode>70) (picture credit: original) 

In order to comprehensively evaluate the influence of different security strategies on the training 

performance and security of reinforcement learning, this study conducted simulation experiments on 

the agreement parameters of the three strategies respectively. Figure 1, Figure 2 and Figure 3 shows 

the comparison of the trend of average rewards and average length of each training steps( including 

256 episode). Figure 4 reflects the average step size comparison of each strategy after the data is close 

to stability. 

As for the convergence curve, the three strategies all show good convergence, which proves that 

the three strategies have successfully completed the training. On this basis, there is a significant 

difference in the performance of the three strategies. Specifically, the reward value of PPO-Baseline 

starts low and shows a slow upward trend, converging to around 45. This proves that it can still learn 

basic high-speed driving behavior under the premise of violating safety constraints. However, it has 

the disadvantages of large fluctuation of reward, and poor stability. For the PPO-Soft strategy, its 

reward mean value is higher than the Baseline, about 50, while maintaining good convergence. The 

training curve reaches a stable state in the middle period, showing stronger strategy expression and 

exploration ability. This shows that under the condition of moderately introducing soft constraints, 

the agent can improve the overall policy benefit on the basis of ensuring a certain degree of security. 

Finally, for the PPO-Hard policy, the data showed a trend of rapid growth at the beginning, slow 

down in the later period, but continued to rise. The rewards value of PPO-Hard increased from 

negative to positive because we added a very strict safety constraint, which made it faster to avoid 

unsafe behaviors through a higher penalty mechanism. Due to the extremely high penalty, its reward 

function data is significantly lower than the other two groups, but the average step size is higher than 

the other two groups in the later training stage. This shows that the algorithm can first quickly reduce 

the unsafe behavior through a strong penalty mechanism, and then continue to explore on this basis. 

Because of the unique design of the algorithm, REWARDS allows us to see how much each value 

collids and shifts. For PPO-Baseline, its reward is greater than that of the constrained strategy at the 

beginning because there is no additional constraint, but in the later stage, even without additional 

punishment mechanism, its reward function is still lower than Baseline, which proves that there are 

more unsafe behaviors in PPO-Baseline. The Rewards of Hard-PPO mechanism increase rapidly, 

which means that the number of unsafe behaviors is decreasing rapidly. 

Finally, Figure 4 is the average step size distribution image of the three functions after stabilization. 

It can be clearly seen that the average step size of PPO-Soft and PPO-Hard strategies is higher than 

that of PPO-Baseline strategy, and they have higher exploration ability because of larger extreme 

values. Due to the stronger constraint ability, the data of PPO-Hard strategy is closer, with less 

fluctuation and more concentrated data. The upper quartile of PPO-Soft is closer to the median and 

higher, which proves that PPO-Soft has good performance on the basis of secure behavior, although 

it has a slightly unstable factor, because its lower quartile is the lowest of all the policies. 
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5. Conclusion 

In general, through experiments, this study proves that the two constraint algorithms given: the PPO 

soft constraint algorithm and the PPO hard constraint algorithm can realize the function of security 

policy optimization on the basis of improving the performance of the model. Specifically, PPO-Hard 

has better stability and training feedback, and PPO-Soft reaches the stationary state earlier, and have 

a strong ability to explore upward, which represents that it has a stronger exploration ability. The 

introduction of these safety policies significantly improves the agent's exploration ability and 

strengthens its robustness, two characteristics that are very important for autonomous driving. Still, 

there are some limitations. First of all, the highway simulation environment configured in this 

experiment has fixed parameters, such as the number of lanes and vehicle density, in order to control 

the experimental variables, but it will cause disadvantages that are difficult to reflect the complexity 

of the comprehensive real traffic situation, such as dynamic traffic flow changes, sensor noise 

interference, etc. Secondly, the reward function of this experiment is designed manually, focusing on 

indicators such as speed control, lane keeping and safety behavior, which is the underlying logic of 

autonomous driving. If it is to be implemented in the real world, a more complex design mechanism 

is needed. Third, due to the limitation of hardware facilities, the experimental step size is set within 

the capacity, and more training times can be performed if a better experimental configuration is 

available. In general, the results of this experiment reach the expected goal, and the safe automatic 

driving optimization strategy of reinforcement learning based on PPO is successfully designed. 

Although there are certain limitations, it has made a theoretical basis for subsequent research. 

Additionally, Based on the logic of soft and hard constraints, researchers can set more safety behavior 

constraints according to this strategy to improve their reinforcement learning training for autonomous 

driving in other environments. As the inevitable development trend of the automobile industry in the 

future, the improvement of safety is crucial if people want to achieve better development. At the same 

time, as the artificial intelligence learning method closest to human behavioral habits, reinforcement 

learning also has high development space and potential in the future. 
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