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Abstract: Traditional methods for predicting personal credit risk have historically lacked 

accuracy and comprehensiveness, failing to effectively analyze a large number of nonlinear 

user characteristics. Large-scale modeling algorithms have advanced quickly in recent years, 

and more and more financial institutions are adopting them to forecast the likelihood of 

personal credit default. However, challenges persist in understanding the distinct features and 

applicability of different models. In this research, a publicly accessible personal credit dataset 

from LendingClub covering the years 2007–2010 is empirically analyzed using three well-

known algorithms: Logistic Regression (LR), Random Forest (RF), and eXtreme Gradient 

Boosting (XGBoost). The Synthetic Minority Over-sampling Technique (SMOTE) is used to 

generate synthetic samples for the minority class to tackle the notable class imbalance in the 

dataset. The performance of these models is evaluated and contrasted by four pivotal criteria 

and Receiver Operating Characteristic (ROC) curves. The outcomes illustrate that XGBoost 

outperforms the other models across all evaluated metrics. Based on these findings, this paper 

recommends XGBoost as the preferred algorithm for personal credit risk prediction. 

Keywords: Personal credit risk, Logistic Regression, Random Forest, XGBoost, SMOTE 

1. Introduction 

In the early 20th century, people accumulated a certain level of wealth and were no longer merely 

concerned with meeting basic needs. Instead, they pursued higher aspirations, such as exceeding their 

immediate means through credit consumption. This demand led to the development of personal credit 

loan strategies. In 1946, John Biggins, a banker at Franklin National Bank, first proposed this concept. 

He designed a system that allowed bank customers to make purchases at local merchants, with the 

bank covering payments and billing customers monthly. This system is widely considered one of the 

earliest bank-issued credit cards, though restricted to local merchants and requiring bank-mediated 

transactions [1]. 

In 1958, Bank of America in California issued BankAmericard, the prototype of modern personal 

credit cards. This first widely used revolving credit card permitted purchases within preset credit 

limits and offered installment payment options. In 1976, BankAmericard was rebranded as Visa, now 

one of the largest global credit card networks [2]. 

However, following the 2008 U.S. subprime mortgage crisis, global unemployment rates surged, 

triggering economic downturns and sharp increases in personal credit defaults. Subsequently, the 
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COVID-19 pandemic emerging in late 2019 caused widespread bankruptcies among individuals due 

to national epidemic control measures, exposing financial institutions to substantial credit default 

risks. 

Prior to the adoption of machine learning methods, financial institutions relied on multiple credit 

evaluation approaches. The FICO score (300-850 range), a primary U.S. credit assessment system, 

evaluates multidimensional individual financial factors including credit history, debt levels, and 

repayment records to determine loan terms. Financial ratios like the Debt-to-Income Ratio (DTI) and 

Credit Utilization Ratio (CUR) remain prevailing indicators, with elevated values signaling default 

risks. 

With advancements in machine learning and large model algorithm optimization, conventional 

credit evaluation systems have become obsolete. Modern personal credit assessments require 

analyzing complex feature interactions beyond traditional capabilities of methods. Simple predictive 

formulas cannot meet contemporary accuracy standards for credit risk assessment. Compared to 

mainstream machine learning algorithms, traditional default prediction methods demonstrate 

significantly lower efficiency and accuracy [3]. 

A variety of machine learning models, such as Random Forest (RF), eXtreme Gradient Boosting 

(XGBoost), Gradient Boosting Decision Tree (GBDT), Logistic Regression (LR), and Deep Learning, 

are commonly applied for predicting personal credit risk. Compared to conventional statistical 

techniques, research has indicated that machine learning significantly increases the precision of credit 

risk forecasts [4]. These machine learning models have demonstrated superior predictive power in 

assessing credit risk, effectively handling complex datasets and capturing intricate patterns that 

traditional methods might overlook [5]. However, the effectiveness of a single model is often limited, 

and in special cases, it becomes necessary to explore internal algorithms for potential model fusion 

and improvement. Guo developed an assessment index system and used the analytic hierarchy method 

to improve classification accuracy in his credit risk control technique, which was based on a weighted 

RF algorithm [6]. Liu proposed two improved GBDT models that address the limitations of traditional 

GBDT, such as limited feature diversity [7]. Ren innovatively applied GBDT to simulate the mass 

balance of Asian alpine glaciers, removing dependence on predefined physical laws and high 

computational cost [8]. In the paper investigated by Machado and Karray, optimal prediction was 

achieved using k-Means and DBSCAN for unsupervised learning, and AdaBoost, RF, decision trees, 

SVM, and neural networks for supervised learning [9]. 

In the data analysis of financial institutions like investment banks and stock exchanges, the 

utilization of machine learning for credit risk assessment has grown in prominence. However, most 

data analysts struggle to efficiently analyze the massive customer datasets at their disposal and select 

the most suitable and user-friendly model. The purpose of this investigation is to evaluate and contrast 

the performance of three prominent classical modeling algorithms LR, RF, and XGBoost in the 

domain of predicting credit risk. 

2. Dataset and models 

2.1. Dataset 

This research takes advantage of the Kaggle dataset, which is openly accessible and includes actual 

loan data gathered from LendingClub from 2007 to 2010. The dataset comprises 9,536 rows and 14 

columns. The first column, credit.policy, sets as the target variable, indicating whether a borrower 

meets LendingClub’s credit underwriting criteria (1 represents non-default, 0 represents default). The 

remaining 13 columns are feature variables. Table 1 provides detailed descriptions of each feature.   
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Table 1: Dataset attributes table 

Columns Description 

credit. policy Whether the borrower meets LendingClub's credit criteria 

purpose Loan purpose category 

int. rate Loan interest rate 

installment Monthly payment amount if loan is approved 

log.annual.inc Natural log of reported annual income 

dti Debt-to-income ratio 

FICO FICO credit score 

days.with.cr.line Total days since first credit line opened 

revol.bal Current balance on revolving credit accounts 

revol.util percentage of available revolving credit being used 

inq.last.6mths Recent 6-month credit inquiries count 

delinq.2yrs Past 2 years' 30+ day delinquencies 

pub.rec Number of negative public records 

not.fully.paid Unpaid loan status indicator (1 = defaulted) 

2.2. Feature engineering 

Missing values and outliers are analyzed using heat-map detection and box plot analysis, respectively. 

No missing values or significant outliers were identified. To ensure compatibility with the three 

models, categorical variables in the purpose column must be encoded into numerical formats. 

Nowadays, these are tremendous types of encoding algorithms applied in different models. According 

to numerous studies, One-Hot Encoding is one of the most effective approaches for LR to eliminate 

ordinal bias from categorical values. For the past relative paper, Label Encoding for tree-based 

models (RF and XGBoost), which efficiently handles categorical variables without increasing 

dimensionality [10]. The purpose column contains 7 categories, and Label Encoding preserves 

computational efficiency while avoiding high-dimensional sparse matrices. 

2.3. Models 

2.3.1. Logistic Regression 

LR is a Generalized Linear Model, specifically designed to address binary classification problems. In 

the context of credit risk prediction, its objective is to construct a probabilistic model based on 

historical data with the purpose of predicting the likelihood of a borrower defaulting or the capacity 

of refunding regularly. LR is essentially a probabilistic classifier, with its output being the probability 

of the event occurring 𝑃(𝑦 = 1|𝒙) , which is then mapped to class labels through a threshold 

(typically 0.5 for binary classification problems). 

LR employs the Sigmoid function to convert the continuous values of the linear combination to 

the interval (0,1), supposing a linear relationship between the features and the target variable. The 

mathematical form is: 

 𝑃(𝑦 = 1|𝒙) = 𝜎(𝒘𝑇𝒙 + 𝑏) =
1

1+𝑒−(𝒘𝑇𝒙+𝑏)
 (1) 

In this formula, 𝒙 represents the input feature vector; 𝒘denotes the model weight parameters, 

reflecting the strength and direction of influence of each feature on default risk. 𝒘 is the bias term, 

adjusting the intercept of the decision boundary;  (𝒘𝑇𝒙 + 𝑏) is the Sigmoid function, ensuring the 

output value lies within (0,1).   
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LR employs the log-likelihood function as the optimization objective. However, it typically uses 

the Negative Log-Likelihood to minimize error. The mathematical expression is 

 𝐽(𝐰, 𝑏) = − ∑  𝑁
𝑖=1 [𝑦𝑖log 𝑝𝑖 + (1 − 𝑦𝑖)log (1 − 𝑝𝑖)] (2) 

In this formula, 𝑝𝑖 = 𝜎(𝐰⊤𝐱𝑖 + 𝑏),𝑦𝑖 is the true label.  

The loss function is essentially the cross-entropy loss, which measures the divergence between the 

true distribution 𝑦 and the predicted distribution 𝑝. 

The parameters 𝐰 and 𝐛 in LR are optimized via gradient descent. The updated rules are: 

 𝐰(𝑡+1) = 𝐰(𝑡) − 𝜂
∂𝐽

∂𝐰
 (3) 

 𝐛(𝑡+1) = 𝐛(𝑡) − 𝜂
∂𝐽

∂𝐛
 (4) 

In these two iterative functions,𝜂 is step size. 

By deriving the partial derivatives of the loss function 𝐽(𝐰, 𝑏) 

 
∂𝐽

∂𝐰
= ∑  𝑁

𝑖=1 (𝑝𝑖 − 𝑦𝑖)𝐱𝑖 (5) 

 
∂𝐽

∂𝑏
= ∑  𝑁

𝑖=1 (𝑝𝑖 − 𝑦𝑖) (6) 

the iterative update functions are obtained: 

 w(𝑡+1) = w(𝑡) − 𝜂 ∑  𝑁
𝑖=1 (𝑝𝑖 − 𝑦𝑖)x𝑖 (7) 

 𝑏(𝑡+1) = 𝑏(𝑡) − 𝜂 ∑  𝑁
𝑖=1 (𝑝𝑖 − 𝑦𝑖) (8) 

2.3.2. Random Forest 

RF is an ensemble learning technique that builds several decision trees and aggregates their output to 

increase generalization ability. The model leverages Bootstrap Sampling and Feature Subset 

Selection to introduce randomness during tree construction, thereby reducing overfitting risk and 

enhancing prediction accuracy. Each of the several decision trees that make up an RF was trained 

using a distinct subset of the training dataset. 

Given a training dataset: 

 𝐷 = {(𝐱𝑖, 𝑦𝑖)}𝑖=1
𝑁  (9) 

Here, 𝐱𝑖 is the feature vector of the i-th sample, and 𝑦𝑖 is the target variable. 

The prediction output of the RF is the majority voting result of all decision trees:   

 𝑦̂ = arg 𝑚𝑎𝑥
𝑐

 ∑  𝑇
𝑡=1 1(𝑓𝑡(𝐱) = 𝑐) (10) 

where 𝑓𝑡(𝐱) is the prediction of the t-th tree, 𝑇 is total trees count, 𝑐 is class label, and 1(𝑓𝑡(𝐱) =
𝑐) is the indicator function.   

The training process primarily involves Bootstrap Sampling, where N samples are randomly drawn 

with replacement from the original dataset to train each decision tree. Feature Subset Selection 

happens during the construction of each tree, 𝑚 ≪ 𝑑 features are randomly selected from the total 

𝑑 features as candidates as each node splitting, and the optimal feature is chosen for splitting. The 

splitting process is typically optimized using the Gini index in classification problems:   

 𝐺(𝐷) = 1 − ∑  𝑐 𝑝𝑐
2 (11) 

Here 𝑝𝑐
  denotes the probability of class c in the dataset.   
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The training of RF can be viewed as an iterative optimization process, where the construction of 

each decision tree follows a recursive splitting procedure. The iterative equation is:   

 𝐷𝑡
(𝑗+1)

= 𝐷𝑡
(𝑗)

− arg 𝑚𝑎𝑥
𝜃

 Δ(𝐷𝑡, 𝜃) (12) 

Here 𝜃 represents the optimal split feature and split point and  Δ(𝐷𝑡, 𝜃) denotes the splitting gain 

of the current node. 

The entire forest training process converges to a stable ensemble, where each tree 𝑓𝑡 

approximately satisfies: 

 𝔼[𝑓𝑡(𝐱)] ≈ 𝑓∗(𝐱) (13) 

Here 𝑓∗(𝐱) is the theoretically optimal decision function.   

In this research, credit risk analysis is a classical binary classification problem, and the cross-

entropy loss function is employed: 

 𝐿(𝑦, 𝑦̂) = − ∑  𝑁
𝑖=1 ∑  𝑐 1(𝑦𝑖 = 𝑐)log 𝑝𝑐 (14) 

2.3.3. eXtreme Gradient Boosting 

XGBoost is a machine learning model improved from GBDT. Compared to traditional GBDT, 

XGBoost enhances model performance and convergence speed by optimizing the objective function, 

incorporating regularization terms, column sampling, and parallel computation and so on. 

XGBoost is an additive model that constructs T decision trees in a stepwise optimization manner 

to minimize the objective function. Its mathematical formulation is:   

 𝑦̂𝑖
(𝑡)

= ∑  𝑡
𝑘=1 𝑓𝑘(𝐱𝑖) (15) 

where 𝑦̂𝑖
(𝑡)

 represents the sample 𝐱𝑖’s expected value after t-th iteration, 𝑓𝑘 denotes k-th decision 

tree, and t is the current iteration step.   

XGBoost approximates the true target value 𝑦𝑖 by learning a sequence of decision trees 𝑓𝑘:   

 𝑦̂𝑖 = ∑  𝑇
𝑘=1 𝑓𝑘(𝐱𝑖) (16) 

Each tree 𝑓𝑘 is selected from a function space , defined as:   

 𝑓𝑘(𝐱) = 𝑤𝑞(𝐱) (17) 

where 𝑞(𝐱) represents the structure of the decision tree, mapping the sample 𝐱 to a leaf node index, 

and 𝑤𝑞(𝐱) is the weight of the corresponding leaf node. 

In order to optimize the model, XGBoost minimizes the goal function, which is made up of two 

parts: 

 ℒ (𝑡) = ∑  𝑁
𝑖=1 𝑙(𝑦𝑖, 𝑦̂𝑖

(𝑡)
) + ∑  𝑡

𝑘=1 Ω(𝑓𝑘) (18) 

The term 𝑙(𝑦𝑖, 𝑦̂𝑖
 ) represents the logarithmic loss function, its complete expression is: 

 𝑙(𝑦𝑖 , 𝑦̂𝑖) = −[𝑦𝑖log 𝜎(𝑦̂𝑖) + (1 − 𝑦𝑖)log (1 − 𝜎(𝑦̂𝑖))] (19) 

where 𝜎(𝑦̂𝑖) =
1

1+𝑒−𝑦̂𝑖
 is the sigmoid activation function. 

The regularization term Ω(𝑓𝑘) controls model complexity: 

 Ω(𝑓𝑘) = 𝛾𝑇 +
1

2
𝜆 ∑  𝑇

𝑗=1 𝑤𝑗
2 (20) 
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Here, 𝛾𝑇 represents penalty item of the quantity of leaf nodes in order to prevent overfitting, and 

𝜆 ∑    𝑤𝑗
2 constrains the leaf node weights. 

XGBoost greatly increases optimization efficiency by approximating the loss function via the 

second-order Taylor expansion. The expanded loss function at the t-th iteration is: 

 ℒ (𝑡) = ∑  𝑁
𝑖=1 [𝑙(𝑦𝑖, 𝑦̂𝑖

(𝑡−1)
) + 𝑔𝑖𝑓𝑡(𝐱𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝐱𝑖)] + Ω(𝑓𝑡) (21) 

First-order derivative (gradient): 

 𝑔𝑖 =
∂𝑙(𝑦𝑖,𝑦̂𝑖)

∂𝑦̂𝑖
 (22) 

Second-order derivative (Hessian): 

 ℎ𝑖 =
∂2𝑙(𝑦𝑖,𝑦̂𝑖)

∂𝑦̂𝑖
2  (23) 

Suppose the new tree 𝑓𝑡 has 𝐽 leaf nodes, and the score of each leaf node 𝑗 is 𝑤𝑗. Following that, 

the goal function can be redefined as:   

 ℒ (𝑡) = ∑  𝐽
𝑗=1 [𝐺𝑗𝑤𝑗 +

1

2
𝐻𝑗𝑤𝑗

2] + 𝛾𝐽 +
1

2
𝜆 ∑  𝐽

𝑗=1 𝑤𝑗
2 (24) 

In this function, 𝐺𝑗 = ∑  𝑖∈𝐼𝑗
𝑔𝑖 is the sum of gradients for leaf node 𝑗; 𝐻𝑗 = ∑  𝑖∈𝐼𝑗

ℎ𝑖 is the sum 

of second derivatives (Hessians) for leaf node 𝑗. 

By taking the derivative of 𝑤𝑗 and setting it to zero, the optimal leaf node weight is derived:   

 𝑤𝑗
∗ = −

𝐺𝑗

𝐻𝑗+𝜆
 (25) 

The most effective splitting criterion for the tree is obtained by substituting this into the goal 

function: 

 ℒsplit =
1

2
[

𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝑅
2

𝐻𝑅+𝜆
−

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝛾 (26) 

If this value is greater than zero, the split is executed; otherwise, splitting terminates, and the 

iteration concludes. 

3. Experimental set-up 

3.1. Positive and negative example 

The dataset exhibits severe class imbalance with 7,710 positive instances versus 1,868 negative 

instances. The three most prevalent strategies for addressing this imbalance include under-sampling, 

over-sampling, and Synthetic Minority Over-sampling Technique (SMOTE) [11]. 

The simple method of traditional under-sampling involves decreasing the size of the dominant 

class at random to equal that of the less frequent class. While it may reduces computational costs and 

training time, this strategy risks discarding critical information and limiting the model’s learning 

capacity. Sometimes it is unacceptable, especially in small datasets. Classic oversampling may 

contribute to bias in small datasets due to overfitting and degraded generalization performance, 

leading to higher prediction errors. Hence, this research adopts the SMOTE algorithm. 

SMOTE is essentially an oversampling strategy that synthesizes new minority-class samples rather 

than replicating existing ones. To be more specific, a minority-class sample 𝑥𝑖 is selected randomly 

and a neighboring sample 𝑥𝑁𝑁  which is stochastically chosen from its k-nearest neighbors. A 

synthetic sample 𝑥new is generated using the following function [12]. 
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 𝑥new = 𝑥𝑖 + 𝜆 ⋅ (𝑥𝑁𝑁 − 𝑥𝑖) (27) 

Here 𝜆 is a random number in (0,1). 

3.2. Standardization 

Standardization is applied during preprocessing to scale features to a uniform range, enhancing model 

stability and convergence speed, particularly for gradient descent-based algorithms like LR. 

Standardized features (mean = 0, standard deviation = 1) reduce gradient descent step sizes and 

accelerate training. In this dataset, features exhibit vastly different scales such as int.rate < 0.5 and 

revol.bal ranging from hundreds to hundreds of thousands. Without standardization, large-scale 

features could dominate training and lead to skewing predictions. 

4. Result 

4.1. Evaluation 

Table 2: Performance comparison of three models 

Models/Metrics accuracy precision recall F1 

LR 0.8476 0.9439 0.8619 0.9010 

RF 0.9755 0.9876 0.9818 0.9847 

XGBoost 0.9849 0.9896 0.9916 0.9906 

 

The comparative analysis of model performance in Table 2 reveals XGBoost's consistent dominance 

over LR and RF across all metrics. LR, though interpretable, exhibits significant limitations (accuracy: 

0.8476; recall: 0.8619), reflecting its inability to model non-linear feature interactions critical for 

imbalanced credit risk prediction. XGBoost's superiority stems from its regularization mechanisms, 

second-order optimization for efficient convergence, and capacity to capture complex feature 

interdependencies—advantages that align with the high-dimensional, non-linear nature of credit 

datasets. These findings underscore XGBoost's suitability for financial risk assessment, balancing 

predictive power and generalization, while lower recall of LR highlights its inadequacy in identifying 

high-risk borrowers. 

Next, this research concentrates on the ROC curves of the three models, shown in the following 

Figure 1: 

 

Figure 1: ROC Curve comparison of three models (picture credit: original) 
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Figure 1 presents ROC curves comparing the three models, with Area Under the Curve (AUC) 

values indicating discriminatory power. XGBoost (AUC = 0.9923) slightly outperforms RF (AUC = 

0.9917), underscoring its robustness in distinguishing defaulters from non-defaulters. LR (AUC = 

0.9060), while acceptable, significantly underperforms the ensemble methods, highlighting the 

superiority of tree-based models in capturing complex, non-linear patterns. The close proximity of 

XGBoost and RF curves reflects their high effectiveness, with the marginal edge of XGBoost 

attributed to its iterative error correction and feature weighting. 

Overall, these findings validate the effectiveness of ensemble learning approaches in financial risk 

prediction, suggesting that institutions seeking to optimize risk classification should prioritize 

advanced tree-based models over traditional linear approaches. 

4.2. Feature importance analysis 

Permutation Importance serves in this research to measure the significance of each attribute. By 

examining the decline in model prediction capacity when the values of a feature are randomly shuffled, 

this model-agnostic technique assesses the relevance of a feature. The core principle is that if a feature 

is critical to the model's prediction, shuffling its values disrupts the actual relationship between the 

feature and the target variable, leading to a significant deterioration in evaluation metrics[13]. 

Conversely, if a feature is negligible, shuffling its values results in minimal changes to the 

performance of the model [14]. 

The following Figures 2, 3, and 4 display the feature importance bar charts for the three models. 

 

Figure 2: Logistic Regression permutation importance (picture credit: original) 

 

Figure 3: Random Forest permutation importance (picture credit: original) 
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Figure 4: XGBoost permutation importance (picture credit: original) 

The three figures reveal distinct patterns in how each model prioritizes features for credit risk 

prediction. LR emphasizes linearly separable features such as inq.last.6mths and fico. However, its 

limited ability to capture non-linear relationships results in lower recall and overall performance. In 

contrast, RF and XGBoost, as tree-based ensemble methods, demonstrate greater flexibility in 

identifying complex interactions, prioritizing additional features like days.with.cr.line and dti. 

XGBoost further enhances feature importance by incorporating regularization, highlighting revol.bal 

as a critical indicator of default risk. Tree-based models achieve superior predictive accuracy, making 

them ideal for minimizing financial risk in credit risk analysis. 

5. Conclusion 

With the rapid expansion of financial services and the increasing demand for accurate credit risk 

evaluation, leveraging advanced machine learning techniques has become pivotal for effective 

decision-making in lending institutions. In the context of evaluating personal credit risk, this paper 

performs a thorough comparative examination of three popular classical machine learning algorithms. 

The SMOTE technique is effectively applied to synthesize new minority-class samples to eliminate 

the intrinsic class imbalance in actual financial data. 

Experiments on a sizable LendingClub dataset show that XGBoost generally performs better than 

LR and RF in a variety of assessment measures. XGBoost is especially appropriate for the intricate 

process of evaluating personal credit due to its capacity in coping with high-dimensional data and 

simulating nonlinear relationships. Moreover, it exhibits strong robustness and generalizability under 

different sampling conditions.  

This research endeavors to juxtapose the efficacy of three distinct models within the domain of 

forecasting the likelihood of credit default, ultimately aiming to identify the most optimal solution. 

In the future, further experiments may explore hybrid models that integrate the strengths of multiple 

algorithms, potentially achieving improved predictive performance through ensemble approaches. 

In conclusion, this paper underscores the practical superiority of XGBoost in handling nonlinear, 

imbalanced financial datasets and offers valuable insights into building more reliable and intelligent 

credit assessment models in real-world financial applications. 
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