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Abstract: With the widespread adoption of IoT devices, firmware vulnerabilities have
emerged as a significant cybersecurity threat. These vulnerabilities can lead to devices being
controlled, data breaches, and even physical damage, severely impacting personal privacy
and the security of critical infrastructure. This paper aims to provide an in-depth analysis of
the formation, detection, assessment, management, and prevention of IoT firmware
vulnerabilities, exploring their significance and role. Through a literature review and case
studies, combined with techniques such as static analysis, fuzz testing, and deep learning, this
study systematically investigates the causes of firmware vulnerabilities and their preventive
measures. The research reveals that the causes of IoT firmware vulnerabilities primarily
include design flaws, errors during the development process, and supply chain issues. This
paper proposes various detection methods, including static analysis, fuzzing, and deep
learning-based detection techniques, and discusses vulnerability management and prevention
measures from technical, management, and policy/regulatory perspectives. The research
findings indicate that the prevention of IoT firmware vulnerabilities requires a multi-faceted
approach, integrating artificial intelligence and big data technologies to build a
comprehensive security protection system.
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1. Introduction

The rapid proliferation of IoT technology is reshaping the production and lifestyle of human society,
with widespread applications in smart homes, industrial automation, and smart cities deeply
embedded in modern life [1]. However, this technological empowerment conceals severe security
challenges. From 2020 to 2022, the number of IoT firmware vulnerabilities continued to rise at an
average annual rate of 31.6%. Cases such as the Mirai botnet, which built a distributed
denial-of-service attack platform by invading camera firmware, and the Stuxnet virus, which used
PLC firmware vulnerabilities to implement targeted physical destruction, reveal that firmware
security has evolved from a technical issue to a strategic issue concerning personal privacy, economic
security, and even national critical infrastructure. Current research primarily focuses on technical
implementations such as static analysis and fuzzing, but neglects the complex interaction of technical
defects, organizational management, and policy environment in the process of vulnerability
formation. This single-dimensional research paradigm struggles to explain why the severity of the
same technical vulnerabilities varies significantly across different supply chain systems.
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The international community has recognized the essential characteristics of this systemic risk. The
U.S. NIST, in its "IoT Device Cybersecurity Baseline," embedded security design principles into the
technical standard lifecycle for the first time. The European Union is constructing technical barriers
to market access through the IoT trust label system. These measures mark a paradigm shift in security
governance from passive response to active prevention. It is worth noting that China's "13th
Five-Year Plan" industrial control security special support for resilience assessment indicator system
research, and the vulnerability repair decision model based on differential games, are forming
theoretical breakthroughs with local characteristics, providing Eastern wisdom for global IoT
security governance.

This paper presents an in-depth investigation into firmware vulnerabilities within the IoT
ecosystem. We begin by examining the root causes of these vulnerabilities, including design flaws,
development errors, and supply chain issues, elucidating how these factors contribute to the
emergence of firmware exploits. Subsequently, we explore various detection techniques, such as
static analysis, fuzzing, and deep learning-based approaches, detailing their applications and
associated challenges. Furthermore, we establish a hazard assessment and grading model within the
evaluation framework to analyze the scope of vulnerability impacts. In the management and
prevention strategies section, we propose comprehensive mitigation measures from technical,
managerial, and policy/regulatory perspectives, while also discussing their implementation pathways
and effectiveness.

2. The formation of IoT firmware vulnerabilities

The architecture of the 10T is typically divided into four primary layers: the perception layer, the
network layer, the platform layer, and the application layer. The perception layer, as the foundational
level of the IoT, is primarily responsible for collecting real-world data through various sensors and
devices. The network layer undertakes the task of data transmission, ensuring that data can be
smoothly transferred from the perception layer to the application layer. The platform layer provides
core functions such as data storage, processing, and device and service management. The application
layer, as the top layer of the IoT, offers more specific applications and services to users. Security risks
may exist in each layer of this architecture.

Firmware refers to the collection of all programs running on the CPU, an indispensable part of [oT
devices. Unlike embedded programs in traditional computer hardware, firmware stores hardware
information, system configurations, and user data. Therefore, once a firmware vulnerability occurs, it
may directly lead to severe consequences such as hardware damage, user privacy leakage, or service
interruption [1]. The formation of firmware vulnerabilities mainly stems from three aspects: design
defects, errors during the development process, and supply chain issues.

2.1. Design flaw

During the development of IoT firmware, design flaws are a significant source of security
vulnerabilities, already existing in the system architecture design and functional planning stages.
Initially, the absence of input validation mechanisms is a core design flaw. Research indicates that
some loT device firmware lacks comprehensive consideration of input data validation mechanisms
during the design phase. Attackers can exploit this by constructing malicious input data, bypassing
device security boundaries through injection attacks or triggering abnormal behaviors. Furthermore,
weakened security mechanisms exacerbate the risks. Some manufacturers, prioritizing functional
efficiency, employ unencrypted communication protocols or omit authentication steps, exposing
devices to threats such as man-in-the-middle attacks.
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2.2. Errors in the development process

Developers may introduce various errors during code writing, potentially stemming from a lack of
attention to or unfamiliarity with secure coding practices [2]. For instance, buffer overflows represent
a common programming error, where writing data beyond the buffer's capacity can enable attackers
to manipulate program execution and gain control of the device. Logical errors may arise from
developers' misinterpretations of requirements or flaws in algorithm design, leading to anomalous
device behavior under specific conditions, thus providing opportunities for attackers. Furthermore,
developers' improper resource management (e.g., failure to release file handles or memory correctly)
can lead to resource exhaustion, rendering the device inoperable. In addition, improper configuration
of the development environment, such as using insecure compilation options or ignoring security
warnings, can also sow the seeds of problems.

2.3. Supply chain issues

The proliferation and increasing complexity of Internet of Things (IoT) devices have expanded the
scope and diversity of supply chains, inevitably leading to the integration of third-party components
and open-source libraries during firmware development. While these components and libraries can
expedite development and reduce costs, they may also introduce known or unknown security
vulnerabilities. For instance, open-source components like OpenSSL, widely used in IoT device
firmware, can become entry points for attackers if not promptly updated or audited. Furthermore, the
complexity of the supply chain complicates firmware updates and maintenance, particularly when
multiple vendors and diverse architectures are involved. Inadequate firmware update mechanisms can
result in the persistence of security vulnerabilities. Developers often lack comprehensive security
assessments when integrating third-party components, exacerbating supply chain issues. Moreover,
the absence of effective security auditing and vulnerability management mechanisms in vendor
supply chain management leads to numerous unpatched vulnerabilities in deployed firmware. Supply
chain issues in [oT firmware not only increase the risk of vulnerability formation but also potentially
amplify the scope and impact of these vulnerabilities.

3.  Vulnerability mining and detection in IoT firmware

The firmware of IoT devices, acting as the core for hardware-software interaction, critically
determines both operational integrity and user privacy. Vulnerabilities within the firmware can lead
to device compromise, sensitive data breaches, and even network outages. Consequently, the
investigation of efficient, automated firmware vulnerability detection techniques is of paramount
importance. Such techniques facilitate the timely identification of vulnerabilities prior to firmware
deployment, thereby mitigating potential damage from future attacks. Furthermore, they enable the
analysis of a large volume of firmware within a constrained timeframe, optimizing both human
resources and financial expenditures. Current automated vulnerability detection methodologies
primarily encompass static analysis, symbolic execution, fuzzing, and machine learning techniques.
This study will subsequently analyze static analysis, fuzzing, and deep learning-based detection
techniques.

3.1. Static analysis techniques

As one of the core methods for [oT firmware vulnerability mining, static analysis techniques provide
deep parsing of binary code through non-execution state analysis, aiming at discovering potential
vulnerabilities with the significant advantage of not needing to rely on the runtime environment [3].
These techniques are rooted in formal program analysis, employing lexical analysis, syntactic
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analysis, and the construction of control flow graphs and data dependency graphs to verify code
compliance with critical security, reliability, and maintainability metrics. Given the proprietary
nature of most IoT firmware, where source code or design documentation is rarely available, static
analysis heavily relies on reverse engineering and static program analysis methodologies [4].

3.1.1.Refinement of the technical process

The technical workflow refinement encompasses the entire process, from firmware acquisition to
vulnerability detection. Initially, raw firmware files are obtained via hardware debugging interfaces
(e.g., UART, JTAG) or vendor repositories. Subsequently, entropy analysis or magic number
matching is employed to ascertain whether the firmware is encrypted or compressed. Following this,
firmware unpacking tools (such as Binwalk) are utilized to parse the file system structure and extract
executable modules. In instances where the firmware lacks a defined file system, self-organizing
algorithms or semi-supervised learning methods are integrated to pinpoint critical code segments.
Building upon this, binary code is transformed into an intermediate language, and control flow graphs
(CFGs) and data dependency graphs (DDGs) are constructed. Address relocation issues are addressed
through base address inference or symbolic execution. Ultimately, vulnerability pattern matching is
performed based on static analysis rule sets and taint analysis techniques. This includes tracking taint
propagation paths to detect buffer overflows or format string vulnerabilities, and identifying
unvalidated user input points [5].

3.1.2. Technical limitations

While static analysis techniques have achieved considerable maturity in the context of structured
firmware, several challenges persist in the analysis of bare-metal firmware. The absence of
standardized load addresses in bare-metal firmware leads to fragmented disassembly results. Existing
research employs dynamic symbolic execution coupled with hardware emulation to infer execution
contexts, yet their efficiency and accuracy are still constrained by the path explosion problem [5].
Furthermore, vendors employ code obfuscation or custom instruction sets to safeguard intellectual
property, significantly reducing the success rate of traditional static analysis tools such as IDA Pro
and Ghidra. In addition, the heterogeneous architectural characteristics of IoT devices make existing
tools have semantic gaps for non-x86 platforms, and need to rely on architectural description
languages to enhance cross-platform analysis capabilities.

3.2. Fuzzing techniques

Fuzzing represents a highly effective dynamic analysis methodology for the detection of
vulnerabilities within IoT firmware. At its core, fuzzing leverages automated generation of
malformed inputs to trigger unexpected behaviors in the target system, thereby identifying potential
vulnerabilities. Unlike static analysis techniques, fuzzing does not necessitate prior knowledge of
code semantics, making it particularly well-suited for the analysis of closed-source firmware and the
discovery of zero-day exploits. Based on the observability of program information, fuzzing can be
categorized into black-box, grey-box, and white-box approaches, with grey-box fuzzing emerging as
the dominant paradigm in loT firmware testing due to its balance of efficiency and coverage [4].

3.2.1. The primary application scenarios for fuzzing

The testing regimen primarily encompasses fuzzing of IoT device-specific communication protocols,
such as MQTT and CoAP, to identify vulnerabilities within protocol implementations. Furthermore,
it involves the assessment of security risks associated with the interaction interfaces between the
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kernel and peripheral hardware components, including WiFi chips and sensors. Finally, the process
validates the device's processing logic and behavioral stability under anomalous input scenarios by
simulating atypical user input data.

3.2.2.Challenges in fuzzing

In the realm of test case generation, fuzzing tools often exhibit a reliance on byte-level mutation
techniques due to an inadequate understanding of communication protocols. This results in the
generation of a substantial number of invalid seeds that do not conform to protocol specifications,
thereby significantly diminishing efficiency. Furthermore, the acquisition of high-quality initial seed
sets continues to depend on manual expertise, which presents challenges in ensuring diversity and
representativeness. Regarding device emulation accuracy, current technologies demonstrate
insufficient capabilities in simulating complex hardware environments and the specialized
peripherals of IoT devices, such as customized components. This deficiency leads to discrepancies
between simulation outcomes and actual operational states, potentially failing to trigger genuine
vulnerabilities. In addition, anomaly detection methods have both false alarm and omission problems.
The former escalates the cost of manual verification, while the latter may lead to the oversight of
potential risks, directly impacting the comprehensiveness of vulnerability discovery.

3.3. Deep learning-based detection techniques

Deep learning, a potent artificial intelligence technique, facilitates efficient feature learning and
pattern recognition in complex data through the construction of multi-layered neural network
architectures. Deep learning-based IoT firmware vulnerability detection leverages deep learning
algorithms and techniques to analyze and detect vulnerabilities in IoT device firmware, which are
often missed by traditional methods [1].

3.3.1. Applications of deep learning in vulnerability detection

The application of deep learning in firmware security analysis manifests as multi-level automation
capabilities. By constructing multi-layered neural network models, deep feature representations of
firmware code can be automatically learned. For instance, the Gemini model utilizes binary functions
generated from the same source code under different platform and compiler optimization levels to
construct large-scale training datasets, significantly enhancing the generalization ability for unseen
functions [6]. Simultaneously, integrating static node analysis with deep learning techniques enables
the identification of potential security features and vulnerability patterns in firmware, achieving
precise localization of IoT software vulnerabilities through the extraction of node selection rules.
Furthermore, cross-platform detection capabilities, achieved by converting structures like Control
Flow Graphs (CFQG) into advanced digital feature vectors (as designed in the Genius tool), effectively
eliminate differences across various architectures and platforms, addressing the scalability issues in
vulnerability detection [7]. These methods collectively improve the accuracy and adaptability of
vulnerability identification.

3.3.2.Challenges of deep learning detection techniques

The application of deep learning techniques is confronted with several challenges. Initially, the
reliance on extensive, high-quality labeled datasets inflates training costs and significantly
complicates data acquisition. Secondly, the intricate nature of model architectures necessitates
substantial computational resources for both training and inference. Furthermore, the limited
interpretability of decision-making processes, particularly in safety-critical domains, restricts model
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trustworthiness and practical utility, thereby posing a significant constraint on real-world
deployment.

4. Evaluation of IoT firmware vulnerabilities
4.1. Hazard assessment and classification

Hazard assessment of IoT firmware vulnerabilities is a critical component of vulnerability
management, aimed at quantifying the multi-dimensional impact of vulnerabilities on device
operation, user privacy, and system security. Specifically, vulnerabilities can directly compromise
device functionality, such as buffer overflows leading to device crashes or privilege escalation
enabling complete device control by attackers, resulting in service disruptions or device failures.
Simultaneously, user privacy is at risk of exposure, as vulnerabilities in smart cameras, for example,
can be exploited to steal video surveillance data, geolocation, or personally identifiable information.
Moreover, system integrity may be compromised by attackers tampering with firmware or
configurations, such as firmware downgrade attacks that force devices to revert to older versions with
known vulnerabilities, leading to unpredictable system behavior. These potential threats collectively
constitute a composite security risk for IoT devices across functional, privacy, and system levels.

To facilitate vulnerability impact classification, a standardized scoring system such as the
Common Vulnerability Scoring System (CVSS) can be employed. CVSS provides a set of
quantifiable metrics for assessing vulnerability severity, encompassing attack complexity, attack
vector, and impact scope. Through CVSS scoring, vulnerabilities can be categorized into four
severity levels: low, medium, high, and critical, thereby assisting security teams in prioritizing
high-risk vulnerabilities [8].

4.2. Impact scope assessment

Scope of impact assessment as a core component of quantitative analysis of vulnerability hazards,
necessitating multi-layered system modeling to elucidate the propagation paths and destructive
potential of potential threats. This assessment framework must encompass the following three
progressive levels: At the individual device level, the direct impact of the vulnerability on the target
device's functional integrity, privacy protection mechanisms, and security control capabilities must
be quantified. At the system network level, the risk of lateral penetration within the IoT topology
must be evaluated, such as exploiting vulnerabilities in inter-device communication protocols to
construct botnets, leading to large-scale device coordination failures [9]. At the critical infrastructure
level, the cascading effects of vulnerabilities on core systems such as energy and transportation must
be analyzed. A typical example includes firmware vulnerabilities in metering terminals within smart
grids, which may trigger a cascading failure of regional power supply systems through supply chain
contamination.

5. Management and prevention of IoT firmware vulnerabilities
5.1. Technical prevention measures

Firmware encryption, employing cryptographic algorithms such as AES and RSA, is crucial for
maintaining firmware integrity and confidentiality, thereby mitigating the risks of interception or
tampering during transmission and storage. This ensures that only authorized devices can decrypt and
execute the firmware. Secure boot mechanisms, by verifying digital signatures, guarantee that
devices initiate operations from trusted firmware, thus preventing the loading of compromised
firmware. A robust vulnerability remediation strategy necessitates the regular release of firmware
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updates by manufacturers to address known wvulnerabilities, coupled with automated update
capabilities. Furthermore, establishing a comprehensive vulnerability reporting and response system
is essential to encourage user reporting and expedite the patching process. Device authentication and
authorization, leveraging protocols like OAuth and TLS, are implemented to restrict network access
to authorized devices, thereby preventing unauthorized intrusions [10]. Data isolation and access
control measures, through the implementation of data segregation and permission restrictions, are
designed to minimize data leakage risks, safeguard sensitive data from unauthorized access, and limit
user and application privileges, thereby protecting data confidentiality and integrity.

5.2. Management-level preventive measures

Security policy formulation necessitates comprehensive coverage of device management, data
protection, and network communication, explicitly defining device access controls, data encryption
protocols, and firmware update procedures, with provisions for periodic review and updates. Supply
chain management must ensure the security of IoT devices and firmware, mandating the selection of
reputable vendors and rigorous scrutiny of supply chain components to prevent the introduction of
malicious firmware or compromised devices. User education and training are designed to enhance
user security awareness, providing instruction on secure device usage practices, such as the
implementation of strong passwords, regular firmware updates, and the avoidance of insecure
networks. Security auditing and monitoring, employing periodic audits, log analysis, intrusion
detection systems, and security information and event management systems, are essential for
real-time monitoring of device and network security status, enabling the prompt identification and
resolution of security vulnerabilities. An incident response plan should encompass incident detection,
response workflows, and recovery measures, with provisions for regular drills and updates to ensure
the capacity for rapid response and mitigation of damages in the event of a security incident.

5.3. Regulatory and legal prevention measures

Regulatory and legal measures for mitigation encompass mandatory firmware updates, compelling
manufacturers to furnish regular updates to ensure timely vulnerability remediation and mitigate
security risks stemming from outdated firmware. This is particularly critical in power grid automation
networks, given the extended operational lifespans of power equipment [11]. Furthermore,
establishing a security certification system, mandating that IoT devices undergo and pass security
certification prior to market release, is essential for ensuring adherence to security standards and
enhancing overall security posture. Moreover, clearly defining the security responsibilities of
manufacturers and users through legislation, and implementing accountability for losses resulting
from security breaches, will incentivize stakeholders to prioritize device security. Finally,
strengthening international collaboration and standardization efforts to jointly develop international
standards and norms for IoT security will facilitate technical exchange and standardization across
different nations and regions, thereby elevating the security of global IoT devices. These measures
collectively constitute a regulatory and legal framework for mitigation, designed to institutionally
safeguard the security and reliability of IoT devices.

6. Conclusion

This paper presents a comprehensive analysis of the origins, detection, and prevention mechanisms
for vulnerabilities in IoT firmware. The root causes are categorized into three primary areas: design
flaws, development errors, and supply chain risks. Regarding detection techniques, static analysis is
limited by path explosion, leading to inefficiency. Dynamic fuzzing faces challenges in balancing the
simulation accuracy and performance constraints of resource-limited devices. Furthermore, deep
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learning-based detection methods are restricted by the availability of high-quality labeled data, which
limits their practical application. To address these issues, this paper proposes an integrated defense
framework. Technically, it advocates for the complementarity of high-coverage static analysis and
the authenticity of dynamic testing. From a management perspective, a full lifecycle security
mechanism is needed, strengthening firmware updates and security audit processes. At the policy and
regulatory level, the standardization and mandatory certification of IoT security standards should be
promoted to improve the overall security level of the industry by regulating market access.

This research offers both theoretical and practical value. Theoretically, by systematically
summarizing the common characteristics of IoT firmware vulnerabilities, it reveals the evolution
patterns and propagation paths of vulnerabilities, extending fundamental network security theories to
the embedded systems domain. Simultaneously, the integration of deep learning and fuzzing
overcomes the limitations of traditional static analysis, constructing a cross-disciplinary
methodological framework for vulnerability detection technology. In practice, the research findings
guide device manufacturers to optimize secure coding standards and firmware update mechanisms,
reducing the attack surface of devices at the factory. It also enhances end-users' awareness of
potential device threats, promoting the implementation of proactive defense measures. Moreover, it
provides data support for policymakers, driving the formulation of mandatory industry security
standards and full lifecycle regulatory policies.

Future research in IoT firmware vulnerability analysis will concentrate on the innovation and
optimization of intelligent, automated, and cross-platform detection technologies. Al-driven
vulnerability detection techniques are expected to become dominant. Enhancements to deep learning
model architectures and training algorithms will be crucial for improving training efficiency and
detection accuracy, while also reducing the reliance on extensive labeled datasets, thereby better
accommodating the demands of large-scale firmware analysis [2]. Future studies should build upon
existing achievements, continuously exploring new technologies and methodologies to advance
vulnerability detection to a higher level, contributing to the construction of a secure and reliable [oT
ecosystem.
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