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Abstract: With the widespread adoption of IoT devices, firmware vulnerabilities have 

emerged as a significant cybersecurity threat. These vulnerabilities can lead to devices being 

controlled, data breaches, and even physical damage, severely impacting personal privacy 

and the security of critical infrastructure. This paper aims to provide an in-depth analysis of 

the formation, detection, assessment, management, and prevention of IoT firmware 

vulnerabilities, exploring their significance and role. Through a literature review and case 

studies, combined with techniques such as static analysis, fuzz testing, and deep learning, this 

study systematically investigates the causes of firmware vulnerabilities and their preventive 

measures. The research reveals that the causes of IoT firmware vulnerabilities primarily 

include design flaws, errors during the development process, and supply chain issues. This 

paper proposes various detection methods, including static analysis, fuzzing, and deep 

learning-based detection techniques, and discusses vulnerability management and prevention 

measures from technical, management, and policy/regulatory perspectives. The research 

findings indicate that the prevention of IoT firmware vulnerabilities requires a multi-faceted 

approach, integrating artificial intelligence and big data technologies to build a 

comprehensive security protection system. 
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1. Introduction 

The rapid proliferation of IoT technology is reshaping the production and lifestyle of human society, 

with widespread applications in smart homes, industrial automation, and smart cities deeply 

embedded in modern life [1]. However, this technological empowerment conceals severe security 

challenges. From 2020 to 2022, the number of IoT firmware vulnerabilities continued to rise at an 

average annual rate of 31.6%. Cases such as the Mirai botnet, which built a distributed 

denial-of-service attack platform by invading camera firmware, and the Stuxnet virus, which used 

PLC firmware vulnerabilities to implement targeted physical destruction, reveal that firmware 

security has evolved from a technical issue to a strategic issue concerning personal privacy, economic 

security, and even national critical infrastructure. Current research primarily focuses on technical 

implementations such as static analysis and fuzzing, but neglects the complex interaction of technical 

defects, organizational management, and policy environment in the process of vulnerability 

formation. This single-dimensional research paradigm struggles to explain why the severity of the 

same technical vulnerabilities varies significantly across different supply chain systems. 
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The international community has recognized the essential characteristics of this systemic risk. The 

U.S. NIST, in its "IoT Device Cybersecurity Baseline," embedded security design principles into the 

technical standard lifecycle for the first time. The European Union is constructing technical barriers 

to market access through the IoT trust label system. These measures mark a paradigm shift in security 

governance from passive response to active prevention. It is worth noting that China's "13th 

Five-Year Plan" industrial control security special support for resilience assessment indicator system 

research, and the vulnerability repair decision model based on differential games, are forming 

theoretical breakthroughs with local characteristics, providing Eastern wisdom for global IoT 

security governance. 

This paper presents an in-depth investigation into firmware vulnerabilities within the IoT 

ecosystem. We begin by examining the root causes of these vulnerabilities, including design flaws, 

development errors, and supply chain issues, elucidating how these factors contribute to the 

emergence of firmware exploits. Subsequently, we explore various detection techniques, such as 

static analysis, fuzzing, and deep learning-based approaches, detailing their applications and 

associated challenges. Furthermore, we establish a hazard assessment and grading model within the 

evaluation framework to analyze the scope of vulnerability impacts. In the management and 

prevention strategies section, we propose comprehensive mitigation measures from technical, 

managerial, and policy/regulatory perspectives, while also discussing their implementation pathways 

and effectiveness. 

2. The formation of IoT firmware vulnerabilities 

The architecture of the IoT is typically divided into four primary layers: the perception layer, the 

network layer, the platform layer, and the application layer. The perception layer, as the foundational 

level of the IoT, is primarily responsible for collecting real-world data through various sensors and 

devices. The network layer undertakes the task of data transmission, ensuring that data can be 

smoothly transferred from the perception layer to the application layer. The platform layer provides 

core functions such as data storage, processing, and device and service management. The application 

layer, as the top layer of the IoT, offers more specific applications and services to users. Security risks 

may exist in each layer of this architecture. 

Firmware refers to the collection of all programs running on the CPU, an indispensable part of IoT 

devices. Unlike embedded programs in traditional computer hardware, firmware stores hardware 

information, system configurations, and user data. Therefore, once a firmware vulnerability occurs, it 

may directly lead to severe consequences such as hardware damage, user privacy leakage, or service 

interruption [1]. The formation of firmware vulnerabilities mainly stems from three aspects: design 

defects, errors during the development process, and supply chain issues. 

2.1. Design flaw 

During the development of IoT firmware, design flaws are a significant source of security 

vulnerabilities, already existing in the system architecture design and functional planning stages. 

Initially, the absence of input validation mechanisms is a core design flaw. Research indicates that 

some IoT device firmware lacks comprehensive consideration of input data validation mechanisms 

during the design phase. Attackers can exploit this by constructing malicious input data, bypassing 

device security boundaries through injection attacks or triggering abnormal behaviors. Furthermore, 

weakened security mechanisms exacerbate the risks. Some manufacturers, prioritizing functional 

efficiency, employ unencrypted communication protocols or omit authentication steps, exposing 

devices to threats such as man-in-the-middle attacks. 
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2.2. Errors in the development process 

Developers may introduce various errors during code writing, potentially stemming from a lack of 

attention to or unfamiliarity with secure coding practices [2]. For instance, buffer overflows represent 

a common programming error, where writing data beyond the buffer's capacity can enable attackers 

to manipulate program execution and gain control of the device. Logical errors may arise from 

developers' misinterpretations of requirements or flaws in algorithm design, leading to anomalous 

device behavior under specific conditions, thus providing opportunities for attackers. Furthermore, 

developers' improper resource management (e.g., failure to release file handles or memory correctly) 

can lead to resource exhaustion, rendering the device inoperable. In addition, improper configuration 

of the development environment, such as using insecure compilation options or ignoring security 

warnings, can also sow the seeds of problems. 

2.3. Supply chain issues 

The proliferation and increasing complexity of Internet of Things (IoT) devices have expanded the 

scope and diversity of supply chains, inevitably leading to the integration of third-party components 

and open-source libraries during firmware development. While these components and libraries can 

expedite development and reduce costs, they may also introduce known or unknown security 

vulnerabilities. For instance, open-source components like OpenSSL, widely used in IoT device 

firmware, can become entry points for attackers if not promptly updated or audited. Furthermore, the 

complexity of the supply chain complicates firmware updates and maintenance, particularly when 

multiple vendors and diverse architectures are involved. Inadequate firmware update mechanisms can 

result in the persistence of security vulnerabilities. Developers often lack comprehensive security 

assessments when integrating third-party components, exacerbating supply chain issues. Moreover, 

the absence of effective security auditing and vulnerability management mechanisms in vendor 

supply chain management leads to numerous unpatched vulnerabilities in deployed firmware. Supply 

chain issues in IoT firmware not only increase the risk of vulnerability formation but also potentially 

amplify the scope and impact of these vulnerabilities. 

3. Vulnerability mining and detection in IoT firmware 

The firmware of IoT devices, acting as the core for hardware-software interaction, critically 

determines both operational integrity and user privacy. Vulnerabilities within the firmware can lead 

to device compromise, sensitive data breaches, and even network outages. Consequently, the 

investigation of efficient, automated firmware vulnerability detection techniques is of paramount 

importance. Such techniques facilitate the timely identification of vulnerabilities prior to firmware 

deployment, thereby mitigating potential damage from future attacks. Furthermore, they enable the 

analysis of a large volume of firmware within a constrained timeframe, optimizing both human 

resources and financial expenditures. Current automated vulnerability detection methodologies 

primarily encompass static analysis, symbolic execution, fuzzing, and machine learning techniques. 

This study will subsequently analyze static analysis, fuzzing, and deep learning-based detection 

techniques. 

3.1. Static analysis techniques 

As one of the core methods for IoT firmware vulnerability mining, static analysis techniques provide 

deep parsing of binary code through non-execution state analysis, aiming at discovering potential 

vulnerabilities with the significant advantage of not needing to rely on the runtime environment [3]. 

These techniques are rooted in formal program analysis, employing lexical analysis, syntactic 
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analysis, and the construction of control flow graphs and data dependency graphs to verify code 

compliance with critical security, reliability, and maintainability metrics. Given the proprietary 

nature of most IoT firmware, where source code or design documentation is rarely available, static 

analysis heavily relies on reverse engineering and static program analysis methodologies [4]. 

3.1.1. Refinement of the technical process 

The technical workflow refinement encompasses the entire process, from firmware acquisition to 

vulnerability detection. Initially, raw firmware files are obtained via hardware debugging interfaces 

(e.g., UART, JTAG) or vendor repositories. Subsequently, entropy analysis or magic number 

matching is employed to ascertain whether the firmware is encrypted or compressed. Following this, 

firmware unpacking tools (such as Binwalk) are utilized to parse the file system structure and extract 

executable modules. In instances where the firmware lacks a defined file system, self-organizing 

algorithms or semi-supervised learning methods are integrated to pinpoint critical code segments. 

Building upon this, binary code is transformed into an intermediate language, and control flow graphs 

(CFGs) and data dependency graphs (DDGs) are constructed. Address relocation issues are addressed 

through base address inference or symbolic execution. Ultimately, vulnerability pattern matching is 

performed based on static analysis rule sets and taint analysis techniques. This includes tracking taint 

propagation paths to detect buffer overflows or format string vulnerabilities, and identifying 

unvalidated user input points [5]. 

3.1.2. Technical limitations 

While static analysis techniques have achieved considerable maturity in the context of structured 

firmware, several challenges persist in the analysis of bare-metal firmware. The absence of 

standardized load addresses in bare-metal firmware leads to fragmented disassembly results. Existing 

research employs dynamic symbolic execution coupled with hardware emulation to infer execution 

contexts, yet their efficiency and accuracy are still constrained by the path explosion problem [5]. 

Furthermore, vendors employ code obfuscation or custom instruction sets to safeguard intellectual 

property, significantly reducing the success rate of traditional static analysis tools such as IDA Pro 

and Ghidra. In addition, the heterogeneous architectural characteristics of IoT devices make existing 

tools have semantic gaps for non-x86 platforms, and need to rely on architectural description 

languages to enhance cross-platform analysis capabilities. 

3.2. Fuzzing techniques 

Fuzzing represents a highly effective dynamic analysis methodology for the detection of 

vulnerabilities within IoT firmware. At its core, fuzzing leverages automated generation of 

malformed inputs to trigger unexpected behaviors in the target system, thereby identifying potential 

vulnerabilities. Unlike static analysis techniques, fuzzing does not necessitate prior knowledge of 

code semantics, making it particularly well-suited for the analysis of closed-source firmware and the 

discovery of zero-day exploits. Based on the observability of program information, fuzzing can be 

categorized into black-box, grey-box, and white-box approaches, with grey-box fuzzing emerging as 

the dominant paradigm in IoT firmware testing due to its balance of efficiency and coverage [4]. 

3.2.1. The primary application scenarios for fuzzing 

The testing regimen primarily encompasses fuzzing of IoT device-specific communication protocols, 

such as MQTT and CoAP, to identify vulnerabilities within protocol implementations. Furthermore, 

it involves the assessment of security risks associated with the interaction interfaces between the 
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kernel and peripheral hardware components, including WiFi chips and sensors. Finally, the process 

validates the device's processing logic and behavioral stability under anomalous input scenarios by 

simulating atypical user input data. 

3.2.2. Challenges in fuzzing 

In the realm of test case generation, fuzzing tools often exhibit a reliance on byte-level mutation 

techniques due to an inadequate understanding of communication protocols. This results in the 

generation of a substantial number of invalid seeds that do not conform to protocol specifications, 

thereby significantly diminishing efficiency. Furthermore, the acquisition of high-quality initial seed 

sets continues to depend on manual expertise, which presents challenges in ensuring diversity and 

representativeness. Regarding device emulation accuracy, current technologies demonstrate 

insufficient capabilities in simulating complex hardware environments and the specialized 

peripherals of IoT devices, such as customized components. This deficiency leads to discrepancies 

between simulation outcomes and actual operational states, potentially failing to trigger genuine 

vulnerabilities. In addition, anomaly detection methods have both false alarm and omission problems. 

The former escalates the cost of manual verification, while the latter may lead to the oversight of 

potential risks, directly impacting the comprehensiveness of vulnerability discovery. 

3.3. Deep learning-based detection techniques 

Deep learning, a potent artificial intelligence technique, facilitates efficient feature learning and 

pattern recognition in complex data through the construction of multi-layered neural network 

architectures. Deep learning-based IoT firmware vulnerability detection leverages deep learning 

algorithms and techniques to analyze and detect vulnerabilities in IoT device firmware, which are 

often missed by traditional methods [1]. 

3.3.1. Applications of deep learning in vulnerability detection 

The application of deep learning in firmware security analysis manifests as multi-level automation 

capabilities. By constructing multi-layered neural network models, deep feature representations of 

firmware code can be automatically learned. For instance, the Gemini model utilizes binary functions 

generated from the same source code under different platform and compiler optimization levels to 

construct large-scale training datasets, significantly enhancing the generalization ability for unseen 

functions [6]. Simultaneously, integrating static node analysis with deep learning techniques enables 

the identification of potential security features and vulnerability patterns in firmware, achieving 

precise localization of IoT software vulnerabilities through the extraction of node selection rules. 

Furthermore, cross-platform detection capabilities, achieved by converting structures like Control 

Flow Graphs (CFG) into advanced digital feature vectors (as designed in the Genius tool), effectively 

eliminate differences across various architectures and platforms, addressing the scalability issues in 

vulnerability detection [7]. These methods collectively improve the accuracy and adaptability of 

vulnerability identification. 

3.3.2. Challenges of deep learning detection techniques 

The application of deep learning techniques is confronted with several challenges. Initially, the 

reliance on extensive, high-quality labeled datasets inflates training costs and significantly 

complicates data acquisition. Secondly, the intricate nature of model architectures necessitates 

substantial computational resources for both training and inference. Furthermore, the limited 

interpretability of decision-making processes, particularly in safety-critical domains, restricts model 
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trustworthiness and practical utility, thereby posing a significant constraint on real-world 

deployment. 

4. Evaluation of IoT firmware vulnerabilities 

4.1. Hazard assessment and classification 

Hazard assessment of IoT firmware vulnerabilities is a critical component of vulnerability 

management, aimed at quantifying the multi-dimensional impact of vulnerabilities on device 

operation, user privacy, and system security. Specifically, vulnerabilities can directly compromise 

device functionality, such as buffer overflows leading to device crashes or privilege escalation 

enabling complete device control by attackers, resulting in service disruptions or device failures. 

Simultaneously, user privacy is at risk of exposure, as vulnerabilities in smart cameras, for example, 

can be exploited to steal video surveillance data, geolocation, or personally identifiable information. 

Moreover, system integrity may be compromised by attackers tampering with firmware or 

configurations, such as firmware downgrade attacks that force devices to revert to older versions with 

known vulnerabilities, leading to unpredictable system behavior. These potential threats collectively 

constitute a composite security risk for IoT devices across functional, privacy, and system levels. 

To facilitate vulnerability impact classification, a standardized scoring system such as the 

Common Vulnerability Scoring System (CVSS) can be employed. CVSS provides a set of 

quantifiable metrics for assessing vulnerability severity, encompassing attack complexity, attack 

vector, and impact scope. Through CVSS scoring, vulnerabilities can be categorized into four 

severity levels: low, medium, high, and critical, thereby assisting security teams in prioritizing 

high-risk vulnerabilities [8]. 

4.2. Impact scope assessment 

Scope of impact assessment as a core component of quantitative analysis of vulnerability hazards, 

necessitating multi-layered system modeling to elucidate the propagation paths and destructive 

potential of potential threats. This assessment framework must encompass the following three 

progressive levels: At the individual device level, the direct impact of the vulnerability on the target 

device's functional integrity, privacy protection mechanisms, and security control capabilities must 

be quantified. At the system network level, the risk of lateral penetration within the IoT topology 

must be evaluated, such as exploiting vulnerabilities in inter-device communication protocols to 

construct botnets, leading to large-scale device coordination failures [9]. At the critical infrastructure 

level, the cascading effects of vulnerabilities on core systems such as energy and transportation must 

be analyzed. A typical example includes firmware vulnerabilities in metering terminals within smart 

grids, which may trigger a cascading failure of regional power supply systems through supply chain 

contamination. 

5. Management and prevention of IoT firmware vulnerabilities 

5.1. Technical prevention measures 

Firmware encryption, employing cryptographic algorithms such as AES and RSA, is crucial for 

maintaining firmware integrity and confidentiality, thereby mitigating the risks of interception or 

tampering during transmission and storage. This ensures that only authorized devices can decrypt and 

execute the firmware. Secure boot mechanisms, by verifying digital signatures, guarantee that 

devices initiate operations from trusted firmware, thus preventing the loading of compromised 

firmware. A robust vulnerability remediation strategy necessitates the regular release of firmware 
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updates by manufacturers to address known vulnerabilities, coupled with automated update 

capabilities. Furthermore, establishing a comprehensive vulnerability reporting and response system 

is essential to encourage user reporting and expedite the patching process. Device authentication and 

authorization, leveraging protocols like OAuth and TLS, are implemented to restrict network access 

to authorized devices, thereby preventing unauthorized intrusions [10]. Data isolation and access 

control measures, through the implementation of data segregation and permission restrictions, are 

designed to minimize data leakage risks, safeguard sensitive data from unauthorized access, and limit 

user and application privileges, thereby protecting data confidentiality and integrity. 

5.2. Management-level preventive measures 

Security policy formulation necessitates comprehensive coverage of device management, data 

protection, and network communication, explicitly defining device access controls, data encryption 

protocols, and firmware update procedures, with provisions for periodic review and updates. Supply 

chain management must ensure the security of IoT devices and firmware, mandating the selection of 

reputable vendors and rigorous scrutiny of supply chain components to prevent the introduction of 

malicious firmware or compromised devices. User education and training are designed to enhance 

user security awareness, providing instruction on secure device usage practices, such as the 

implementation of strong passwords, regular firmware updates, and the avoidance of insecure 

networks. Security auditing and monitoring, employing periodic audits, log analysis, intrusion 

detection systems, and security information and event management systems, are essential for 

real-time monitoring of device and network security status, enabling the prompt identification and 

resolution of security vulnerabilities. An incident response plan should encompass incident detection, 

response workflows, and recovery measures, with provisions for regular drills and updates to ensure 

the capacity for rapid response and mitigation of damages in the event of a security incident. 

5.3. Regulatory and legal prevention measures 

Regulatory and legal measures for mitigation encompass mandatory firmware updates, compelling 

manufacturers to furnish regular updates to ensure timely vulnerability remediation and mitigate 

security risks stemming from outdated firmware. This is particularly critical in power grid automation 

networks, given the extended operational lifespans of power equipment [11]. Furthermore, 

establishing a security certification system, mandating that IoT devices undergo and pass security 

certification prior to market release, is essential for ensuring adherence to security standards and 

enhancing overall security posture. Moreover, clearly defining the security responsibilities of 

manufacturers and users through legislation, and implementing accountability for losses resulting 

from security breaches, will incentivize stakeholders to prioritize device security. Finally, 

strengthening international collaboration and standardization efforts to jointly develop international 

standards and norms for IoT security will facilitate technical exchange and standardization across 

different nations and regions, thereby elevating the security of global IoT devices. These measures 

collectively constitute a regulatory and legal framework for mitigation, designed to institutionally 

safeguard the security and reliability of IoT devices. 

6. Conclusion 

This paper presents a comprehensive analysis of the origins, detection, and prevention mechanisms 

for vulnerabilities in IoT firmware. The root causes are categorized into three primary areas: design 

flaws, development errors, and supply chain risks. Regarding detection techniques, static analysis is 

limited by path explosion, leading to inefficiency. Dynamic fuzzing faces challenges in balancing the 

simulation accuracy and performance constraints of resource-limited devices. Furthermore, deep 
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learning-based detection methods are restricted by the availability of high-quality labeled data, which 

limits their practical application. To address these issues, this paper proposes an integrated defense 

framework. Technically, it advocates for the complementarity of high-coverage static analysis and 

the authenticity of dynamic testing. From a management perspective, a full lifecycle security 

mechanism is needed, strengthening firmware updates and security audit processes. At the policy and 

regulatory level, the standardization and mandatory certification of IoT security standards should be 

promoted to improve the overall security level of the industry by regulating market access. 

This research offers both theoretical and practical value. Theoretically, by systematically 

summarizing the common characteristics of IoT firmware vulnerabilities, it reveals the evolution 

patterns and propagation paths of vulnerabilities, extending fundamental network security theories to 

the embedded systems domain. Simultaneously, the integration of deep learning and fuzzing 

overcomes the limitations of traditional static analysis, constructing a cross-disciplinary 

methodological framework for vulnerability detection technology. In practice, the research findings 

guide device manufacturers to optimize secure coding standards and firmware update mechanisms, 

reducing the attack surface of devices at the factory. It also enhances end-users' awareness of 

potential device threats, promoting the implementation of proactive defense measures. Moreover, it 

provides data support for policymakers, driving the formulation of mandatory industry security 

standards and full lifecycle regulatory policies. 

Future research in IoT firmware vulnerability analysis will concentrate on the innovation and 

optimization of intelligent, automated, and cross-platform detection technologies. AI-driven 

vulnerability detection techniques are expected to become dominant. Enhancements to deep learning 

model architectures and training algorithms will be crucial for improving training efficiency and 

detection accuracy, while also reducing the reliance on extensive labeled datasets, thereby better 

accommodating the demands of large-scale firmware analysis [2]. Future studies should build upon 

existing achievements, continuously exploring new technologies and methodologies to advance 

vulnerability detection to a higher level, contributing to the construction of a secure and reliable IoT 

ecosystem. 
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