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Abstract: The advent of Industry 4.0 and the Internet of Things (IoT) has led to a surge in 

system complexity, propelling the development of intelligent control systems that exhibit 

autonomy and adaptivity. These systems have found widespread application in diverse 

domains, including industry, transportation, and healthcare. The present study focuses on 

three mainstream methods of intelligent control: fuzzy logic control, neural network control, 

and reinforcement control. In addition to a review of the latest research in this field from the 

past five years, the study also examines the latest application areas of current expansion. In 

light of the prevailing trends in the domain of intelligent control, a rational analysis has been 

conducted to assess the technical, ethical, and practical limitations and challenges pertinent 

to this field. This analysis has led to the conclusion that intelligent control systems are poised 

to evolve towards higher degrees of autonomy, safety, and sustainability in the future. 

Keywords: intelligent control, fuzzy logic control, neural network control, reinforcement 

learning 

1. Introduction 

Intelligent control emerged as a breakthrough in the limitations of traditional control methods. 

Traditional control (e.g., PID control) relies on precise mathematical models and struggles to meet 

the challenges of complex, nonlinear, and highly uncertain systems. With the popularity of Industry 

4.0 and the Internet of Things (IoT), system complexity has increased significantly, and the need for 

implementation decisions and multi-objective optimization in dynamic environments has driven the 

evolution of intelligent control towards autonomy and adaptivity. Artificial Intelligence (AI), 

Machine Learning (ML), Deep Learning (DL), etc. are driving the transformation of intelligent 

control from "rule-based" to "data-driven" by enhancing the system's perception, learning and 

decision-making capabilities. 

The core of intelligent control is to enable the system to adjust its strategy autonomously in 

dynamic environments and to realize flexible control strategies by imitating human decision-making, 

learning ability or biological mechanisms. Currently, intelligent control has evolved from a single 

algorithm to a complex system that integrates multiple technologies. By integrating artificial 

intelligence (AI), Internet of Things (IoT), cloud computing, big data and other technologies, 

intelligent control systems achieve the optimization of the entire process of perception, decision-

making and execution. Intelligent control adopts key technologies such as fuzzy control, neural 
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network, reinforcement learning and multi-technology fusion, which enables the application scope to 

be expanded from traditional industry to life services, city management, healthcare and other fields. 

This paper presents a comprehensive review of the development of the field of intelligent control. 

Chapter 1 covers the current status of the field of intelligent control, Chapter 2 covers the latest 

research on key technologies of intelligent control methods and related applications in the past five 

years, and Chapter 3 analyses the challenges and development trends of intelligent control. 

2. Basic concepts of intelligent control 

2.1. Basic principle 

The basic principle of intelligent control is to solve the autonomous decision-making and optimization 

problems of complex systems by integrating traditional control theory and artificial intelligence 

methods. Such systems usually have nonlinear, time-varying or highly uncertain characteristics that 

are difficult to describe by accurate mathematical models. It focuses on system modeling and control 

strategies, emphasizing data-driven and adaptive learning capabilities so that the system can adjust 

its behavior autonomously in dynamic environments. 

In system modeling, traditional control uses math to build accurate models, but these models can 

have errors that affect control. Intelligent control uses data-driven approaches to overcome this. 

Neural networks learn system dynamics from sensor data without equations. Fuzzy systems transform 

inputs into outputs using linguistic rules based on expert experience. Reinforcement learning interacts 

with the environment to build models that predict future states to optimize control. Hybrid modeling 

combines physical laws and data-driven approaches. 

The design of control strategies is another key part of intelligent control. While traditional methods 

rely on fixed parameters, intelligent methods enhance adaptivity by introducing AI techniques. Fuzzy 

control transforms human experience into a rule base to handle nonlinear and linguistic knowledge. 

Neural network control utilizes its nonlinear fitting ability to learn a system model directly as a 

controller or adjust the network weights to adapt to changes. Reinforcement learning, on the other 

hand, optimizes long-term goals through trial-and-error mechanisms, such as minimizing energy 

consumption when training a robot to walk [1]. Key techniques for reinforcement learning include 

Q-learning and policy gradient methods. Hybrid strategies combine the advantages of traditional and 

intelligent approaches, such as adjusting PID parameters with fuzzy logic to adapt to changes or using 

neural networks to predict states and optimize control. 

The realization of intelligent control relies on data and models working together. Neural networks 

and reinforcement learning need a lot of training data, which can be obtained in simulation 

environments and real interactions. Control theory provides stability guarantees for AI methods. It's 

challenging to balance model flexibility with theoretical reliability, as neural networks are a black 

box and reinforcement learning is computationally demanding. Future directions include using 

lightweight models, collaborating with computers, and designing physically guided AI to encourage 

its use in more fields like autonomous driving and smart manufacturing. 

2.2. Mainstream methods 

Fuzzy control is an intelligent control method based on fuzzy logic, which is good at dealing with 

complex systems with uncertainty, non-linearity or difficulty in establishing an accurate mathematical 

model. It imitates the empirical decision making of human beings in actual operation, reasoning about 

the input information through linguistic "fuzzy rules", and finally outputting reasonable control 

signals, which is suitable for controlling home appliances and optimizing traffic signals. 

Neural network control is a type of intelligent control based on artificial neural networks (ANNs). 

It mimics the learning and adaptive abilities of biological neural systems. Neural network control is 
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effective in complex systems. In conventional uses, neural networks usually do two things related to 

control: first, they model the system and generate control instructions; and second, they adjust 

parameters in a classical control structure to adapt to changes. This approach has advantages like 

being able to operate without a precise math model and adapting through data-driven methods. But it 

needs enough data to train, and is highly complex. 

Genetic systems use optimization and learning methods based on the principles of biological 

evolution. They simulate natural selection, genetic recombination, and mutation to search for optimal 

solutions. The system's processes include: randomly generating candidate solutions, screening 

individuals based on an objective function, retaining high-fitness individuals using roulette wheel 

techniques, exchanging gene segments to generate new solutions, and randomly modifying some 

genes to maintain diversity. This method is adept at global search for complex nonlinear problems, 

and it is commonly used in parameter optimization, combinatorial design, and other scenarios, despite 

requiring high computational cost. 

3. Intelligent control key technology 

3.1. Fuzzy logic control 

The core principle of fuzzy logic control uses fuzzy sets and affiliation functions. Unlike traditional 

sets, which use either/or, these sets allow degrees of affiliation between 0 and 1, closer to human 

intuition of fuzzy language such as "high" and "low." The control rules are usually constructed in the 

form of "if-then" rules, covering various possible combinations of inputs. When performing control, 

precise inputs are first converted into affiliation degrees. Corresponding rules are activated, and 

integrated reasoning is performed. Finally, the fuzzy conclusions are transformed into specific control 

instructions through defuzzification. When executing control, precise inputs are first converted into 

affiliation, and then rules are activated according to the rule base. Finally, the fuzzy conclusions are 

converted into specific control instructions through defuzzification, as shown in Fig. 1 [2]. 

 

Figure 1: The process of fuzzy logic control 

Fuzzy logic control systems are frequently utilized to approximate unknown dynamical systems 

and are extensively employed for the control of nonlinear systems. In order to ensure that the 

constraints are not violated and all outputs are bounded, many adaptive fuzzy control schemes have 

been proposed to design controllers that can fulfill the requirements [3]. Fuzzy logic control finds 

application in a variety of scenarios that demand flexible control. Such scenarios include household 

appliances (as evidenced by certain Dyson vacuum cleaner models), industrial automation (as 

exemplified by the Mitsubishi elevator system), and transportation (as demonstrated by Toyota's 

ECT-i system). 

In [4], an adaptive fuzzy control scheme for multi-input multi-output systems with time-varying 

full-state constraints and unknown control directions is proposed, wherein fuzzy logic is utilized to 
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regulate approximate unknown dynamic functions. The sensor is responsible for the measurement of 

the output of the subsystem, and it is also responsible for the generation of the tracking error 𝑧𝑖.The 

adaptive law is designed to update the parameter estimation error based on the tracking error 𝑧𝑖 , 

thereby compensating for system uncertainty in real time. The estimation error is then employed to 

adjust the control direction through the Nussbaum function Ν𝑖, thereby generating an intermediate 

signal 𝜕𝑖. The actual controller integrates the virtual controller and parameter estimates to generate a 

final control quantity, which is used to drive the actuator, thereby adjusting the subsystem state. 

Subsequent to the actuator's action, the subsystem's state undergoes an update, and the sensors are 

subjected to re-measurement, thereby establishing a closed-loop feedback system. In this control 

scheme, the system uncertainty is addressed through online estimation error compensation. The 

Nussbaum function and virtual controller are designed to ensure the global stabilization of the closed-

loop system. This scheme is applicable to multi-stage systems in series or parallel scenarios, and the 

state of each level is gradually calmed by backstepping. The designed virtual controller (1), the actual 

controller (2), and the adaptive laws (3) and (4) are designed in such a way that all outputs and error 

signals of the system are bounded, concurrently, the tracking error 𝑧𝑖,𝑗  satisfies 𝑙𝑖𝑚𝑡→∞𝑧𝑖,𝑗(𝑡) =

0 .[5] also developed a fuzzy adaptive time-varying control method to approximate the uncertain 

dynamics function and unknown parameters. This ensures that the tracking error can be converged to 

a small neighborhood close to zero. The difference is that [5] incorporated a fault-tolerant module to 

design the controller according to the fault-tolerant time-varying. Inspired by the discussions in [4] 

[5, 6] and others, the adaptive fuzzy control scheme proposed in [3] allows the system state to 

converge asymptotically to the origin rather than to a neighborhood of the origin. In this study, 

adaptive fuzzy control is integrated with state constraints to guarantee that the state consistently 

satisfies the constraints. This is achieved by employing a fuzzy logic system to approximate an 

unknown nonlinear function, thereby introducing a barrier component to the control law. 

𝛼𝑖,𝑙 = Ν𝑖,𝑙(𝜈𝑖,𝑙)�̅�𝑖,𝑙 (1) 

𝑢𝑖,𝑛 = Ν𝑖,𝑛(𝜐𝑖,𝑛)�̅�𝑖,𝑛 (2) 

Θ̇̂𝑖,𝑛 =
𝜛𝑖,𝑛𝜅𝑖,𝑛

𝑇 (Χ𝑖,𝑛)𝜅𝑖,𝑛(Χ𝑖,𝑛)𝜂𝑖.𝑛
2

2𝜍𝑖,𝑛
2 − 𝛽𝑖,𝑛Θ̂𝑖,𝑛 (3) 

�̇̂�𝑖,𝑛 = 𝛾𝑖,𝑛𝜂𝑖,𝑛 − 𝜁𝑖,𝑛�̂�𝑖,𝑛 (4) 

3.2. Neural network control 

Neural networks model nonlinear, time-varying, or high-dimensional dynamic systems, or generate 

control signals through network structure, especially for scenarios that are difficult to model by 

traditional methods. They can adjust their weights through online/offline learning to achieve optimal 

control. In practice, they are combined with other methods to improve robustness. Neural networks 

are widely used in intelligent systems (e.g., DJI's 2024 model uses multi-intelligence collaborative 

flight control technology), the energy field (Tesla's drive system uses permanent magnet synchronous 

motor speed control technology), and other fields. 

Dynamic systems are always affected by unknown factors and external disturbances. Standard 

methods can't always achieve systemwide robustness, so [7] introduced a radial basis function neural 

network for differential processing of sliding film surfaces. The global sliding model controller is 

hard to implement because of its need for a detailed understanding of the model. This approach is 

rarely used compared to that of feedforward neural networks. The RNN, which combines a 

feedforward neural network with a feedback loop, has shown an effective solution to the poor 

performance of feedforward neural networks. The process of adjusting parameters is simple, and the 
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basic RNN network structure is shown in Figure 2. The improved capabilities of RNNs have led to 

the creation of many advanced RNN models to deal with specific challenges. 

 

Figure 2: RNN basic network structure 

Inspired by multilayer perceptron and RNN mechanisms, [8] introduced a controller based on a 

double hidden layer recurrent neural network (DHLRNN), ensuring stability and robustness. This 

DHLRNN contains two hidden layers and dynamic recurrent connections, representing memory 

elements. The adaptive parameter and structure learning process of the HLRNN is faster and more 

precise than RNNs.[8] proposed a new controller (6) based on the equivalent controller (5). The ideal 

global sliding mode controller can be obtained from (6) under the condition that all system parameters 

are known. The global sliding mode controller facilitates the attainment of optimal trajectory 

characteristics and ensures the global asymptotic stability of the closed-loop control system. 

However, the unknown parameter matrix A in the control in (6) prevents the ideal controller from 

being obtained, so the design of a global sliding mode controller using a new double hidden layer 

feedback neural network is proposed to solve this problem. The DHLRNN, which consists of 

multilayer perceptions, has two hidden layers and a dynamic cyclic connection that represents 

memory elements. The DHLRNN is a four-layer network embedded with two hidden perceptron and 

an external feedback connection. The initial layer is designated as the input layer, comprising signal-

receiving nodes. A distinguishing feature of this layer is the capacity of its neurons to receive 

components from the output layer through the signaling neural structure, facilitated by the neurons. 

The second layer constitutes the initial hidden layer, which maps the signal from the input space to a 

higher-dimensional hidden space where the signal features are linearly differentiable and the 

computation of the Gaussian function is performed. The signal is subsequently mapped to the third 

layer, and the Gaussian function is once again computed. The fourth layer, designated as the output 

layer, serves to finalize the computation of the neural network's output for a variety of inputs. The 

output signals will be propagated to return the results to the input layer neurons through an external 

feedback loop after completing the computation of the output signals for the current round. 

𝑈𝑒𝑞 = (𝐶𝐵)−1 [𝑓0(𝑡) − 𝐶𝐴𝑋 − 𝐶𝐹 + 𝐶𝑋𝑑] (5) 

𝑈 = (𝐶𝐵)−1 [𝑓0(𝑡) − 𝐶𝐴𝑋 − 𝐶�̇�𝑑 − 𝐾𝑠𝑔𝑛(𝑆)] (6) 

In this system of equations, 𝐴 ∈ 𝑅𝑁×𝑁 , 𝐵 ∈ 𝑅𝑁×𝑁 denotes the parameter matrix, 𝐶 ∈
𝑅𝑁×𝑁represents the non-singular matrix, 𝑋 ∈ 𝑅𝑁is the state vector, 𝐹 ∈ 𝑅𝑁is the uncertainty term, 

𝑓0(𝑡)applies to the function that reaches the global sliding surface, and 𝐾 is the sliding gain. 
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3.3. Reinforcement learning 

Reinforcement learning is a machine learning method that learns optimal strategies through the 

interaction of an intelligent body with its environment. It uses a Markov decision process to model 

the decision-making process. The optimization goal is to find the optimal strategy to maximize the 

expectation of accumulating rewards [9]. The classical reinforcement learning model is shown in Fig. 

3. The fundamental premise of the Markov decision process is that the subsequent state is contingent 

solely on the present state and action (history-independence), i.e.: 𝑃(𝑠𝑡+1|𝑠𝑡, 𝑠𝑎) =
𝑃(𝑠𝑡+1|𝑠0, 𝑎0, ⋯ , 𝑠𝑡, 𝑎𝑡) , thereby reducing the computational complexity of state transition. 

Reinforcement learning has found application in a variety of fields, including gaming AI (e.g., the 

AlphaGo series, DOTA2, OpenAI Five), robotics (e.g., the footed robot Boston Dynamics Atlas, 

which is capable of walking on complex terrains via RL), intelligent transportation (e.g., the 

Hangzhou City Brain project, which has led to a 25% increase in access rate), and intelligent 

healthcare (e.g., da Vinci Surgical Robotics). 

 

Figure 3: The classical reinforcement learning model 

As indicated in the relevant literature, contemporary reinforcement learning (RL) agent models 

demonstrate a propensity to encounter challenges in their capacity to adapt to dynamic and uncertain 

conditions. [11] has drawn attention to the fact that prevailing approaches, including incremental 

learning [12], gradient descent methods [13], the generation of RL detection agents [14], and transfer 

learning, Adaptive self-learning dynamic planning is limited in scope due to its predominantly goal-

oriented nature, which often disregards the learning process as a means of balancing skills and 

challenges. This tendency towards over-adaptation or the failure to retain accumulated knowledge 

can compromise the model's performance when confronted with increasingly complex challenges. In 

addressing these limitations, the concept of flow has been proposed as a potential solution to enhance 

the range of performance in the field of artificial agents. The concept of flow is inherent in the task 

itself, which commences at a specific challenge level and skill level, designated as initial level (α). 

The agent incrementally augments its skill level (Step 1) until the boredom value at the challenge 

level surpasses the boredom threshold (Step 2). In the event that the boredom threshold has been 

surpassed and the experience level corresponds to the system's anticipated final level (step 3), the 

system successfully concludes the learning process. Conversely, the system augments the complexity 

of the challenge by increasing the difficulty level (step 4) and reverting to the learning phase. The 

fundamental framework of [11] comprises two primary algorithms: the stream-based reinforcement 

learning algorithm 1 and the boredom calculation algorithm 2. The modified Flow-based 

reinforcement learning algorithm 1 initially initializes the Q-table and the state of the solution at the 

current challenge level. It then balances exploration and utilization to select actions using the 

decaying ε-greedy Q-learning method. In the initial learning rounds, random actions with relatively 
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high probability are selected, and the probability of exploration is gradually reduced during the 

learning process to increase the chance of utilizing the most appropriate actions. Subsequent to 

ascertaining the solution for each challenge level, a boredom value is calculated based on all the state 

and action pairs accessed by that solution. This value is then compared with a predefined threshold 

to determine whether the agent has exited the Flow region and issued a command. The boredom 

calculation algorithm 2 is based on Equation (7), which determines the frequency of accessing state-

action pairs ((s; a)) over multiple runs. At the conclusion of each iteration, the algorithm recalibrates 

the number of visits and action pairs for each state to determine the level of boredom. The frequency 

with which a given combination is accessed across multiple rounds has been demonstrated to 

inversely correlate with its perceived novelty and increase its boredom value. The boredom value is 

defined to range between [-1,0], with 0 indicating a completely novel solution and -1 indicating a 

solution with no novelty whatsoever. The mean boredom value of all possible combinations is utilized 

in Algorithm 1 to compare with the boredom threshold. In the initial phase of each challenge, 

solutions are initiated with a value of 0. In the absence of novelty in the state and upon attaining a 

value of -1 by the action pair, the challenge is escalated to the subsequent level. 

𝑏𝑡(𝑠, 𝑎) =
(𝜆

1

𝑛𝑡(𝑠)
+ 𝜆

2

𝑛𝑡(𝑠,𝑎)
)

2
⁄ − 1 (7) 

Furthermore, reinforcement learning typically employs reward functions to train the agent's 

behavior to execute a designated task. The complexity of environments can impede the construction 

of reward functions, a challenge that can be effectively addressed by leveraging human preferences. 

[10] proposed a weakly supervised human preference for deep reinforcement learning that allows for 

human input dynamics and weak preference levels. The authors developed human preference scaling 

models to reflect human behavior and reduce the number of human inputs to established human 

presentation estimators. The developed model for human preference reinforcement learning has been 

demonstrated to achieve higher cumulative reward values than current fixed human preference 

models. This finding lends support to the hypothesis that reinforcement learning can reduce the 

amount of dynamic and weakly preferred human inputs by up to 30% without significantly sacrificing 

reward values. In [10], human preferences were modeled using a Bayesian-based method for learning 

strategies from trajectory preference queries, the synthetic prophet. The model developed in [10] is 

predicated on synthetic human preferences and modifies the design of the preference interface in [15] 

to accommodate weaker human preference conditions. Scale-based preferences provide a scaling 

model that inputs dynamic scores by assigning any value between 0.0 and 1.0 to the preference 

segments. The range of z is set to [0.0,1.0], and a z value of 1.0 indicates that humans exhibit a strong 

preference for the left trajectory segment, while a z value of 0.0 indicates an equal preference for both 

segments, and a z value of 0 indicates a preference for the right trajectory segment. The value of 5 

indicates an inability on the part of humans to differentiate between the two trajectory segments under 

consideration. The data indicates a weak preference for 𝜎1 at values between 0 and 0.5, as well as a 

weak preference for 𝜎2  at 0.5 to 1.0. This provides the reinforcement learning agent with more 

accurate human preference information and with a specification of the degree of dominance. [10] 

developed a human demonstration estimator that was based on previous human inputs. This was an 

extended version of the above preference scaling method with a regression model for supervised 

learning. The regression model used was either linear regression or support vector regression (SVR) 

combined with a radial basis function (RBF) kernel. This approach had two advantages. First, it 

reduced the number of human inputs, n. Second, it maintained a good performance without sacrificing 

cumulative rewards. The database, which has been meticulously compiled, comprises n-fold 

preference scaling for preference estimators derived from prior human inputs. Additionally, it 

incorporates supervised learning regression models for human demonstration estimators, which are 
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employed to predict specific human preferences. The database is structured in the following format: 

(𝜎1,𝜎2,�̂�). 

4. The application of intelligent control 

"Intelligent control" refers to systems that adapt and optimize on their own in complex environments 

thanks to technologies like artificial intelligence and machine learning. These versatile systems are 

used in automated robot control, transportation, energy systems, healthcare, and more. 

4.1. Automated robot 

Intelligent control solves problems in automated robotics, such as sensor inaccuracy, adapting to 

dynamic environments, and nonlinear system control. For example, a fault-tolerant tracking problem 

of time-varying formations in multi-robot systems was studied in [5]. A fuzzy adaptive formation 

tracking control system was developed using fuzzy logic systems (FLS) to approximate uncertain 

nonlinear dynamics, enabling formation collision avoidance and stay-connected, and a predetermined 

performance method was used to address the constraint of distance and angle. In human-robot 

interaction, robots can recognize human emotions. A method was proposed in [18] to analyze 

multimodal emotions using a coupled network. This network divides emotion recognition into two 

layers, extracting features using a fusion network of broad and deep learning and correlation analysis. 

4.2. Energy system and smart grid 

Many countries are quickly developing new energy sources to meet rising electricity demand, 

focusing on solar energy. Currently, the lack of inertia response and changing behavior have a 

negligible effect on frequency stability. The solar system is designed to maximize power injection 

into the grid, but this is limited by solar capacity. Synchronizers, which simulate inertia, are essential 

for integrating solar energy and grid stability. However, current synchronizers lack capacity to 

accommodate adaptive damping or digital controllers crucial for solar input management. A novel 

fuzzy logic controller (FLC) framework is proposed in [16] to control Dp in real time, balancing 

speed and stability, and correcting frequency errors based on the frequency difference. This enables 

synchronizers to operate in grid-connected solar systems, addressing frequency stability issues. 

4.3. Medical and healthcare 

Intelligent control has found widespread application in the domain of healthcare, particularly in 

surgical robots, intelligent diagnosis of medical images, and the optimization of drug development. 

Prominent examples include the da Vinci surgical robot, the ET medical brain, and the lower limb 

exoskeleton robot. [17] provides a concrete illustration of the implementation of fuzzy control in the 

context of medical imaging intelligent diagnosis. When employing neuroimaging analysis for the 

automated diagnosis of Alzheimer's disease, traditional deep learning (DL) models encounter 

challenges related to data inaccuracy, stemming from ambiguous expert annotations, difficulties in 

data collection, such as data harmonization issues, and constraints in device resolution. These issues 

hinder the accuracy of analysis, interpretation of results, and comprehension of complex symptoms. 

The integration of fuzzy logic with deep learning, known as "fuzzy deep learning" (FDL), has 

emerged as a significant development in data management and analysis. This approach effectively 

addresses the challenges posed by imprecise data, offering interpretable insights that facilitate more 

accurate and nuanced decision-making. 
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4.4. Transportation 

[19] conducted a review of the components of the autonomous driving task in which reinforcement 

learning can be implemented. These components include controller optimization, path planning and 

trajectory optimization, motion planning and dynamic path planning, the development of advanced 

driving strategies for complex navigation tasks, scenario-based highways, reward learning for intent 

prediction through inverse reinforcement learning from expert data, and ultimately policy learning 

for ensuring safety and performing risk assessment. The authors implemented DRL (DDPG) for 

autonomous driving using a full-size self-driving car [20], which was initially trained in a simulated 

environment and subsequently trained in real time using an on-board computer. The vehicle 

demonstrated the ability to learn to follow lanes and successfully completed real-world trials on a 

250-meter stretch of road. This paper demonstrates the promising future of reinforcement learning in 

the domain of autonomous driving. 

5. Challenges and development trends of intelligent control 

The field of intelligent control, a fusion of artificial intelligence and automation technology, has 

shown significant advantages in many industries. Intelligent control systems can mimic the learning, 

reasoning, and decision-making process of humans, optimize the control strategy through continuous 

feedback, deal with nonlinear, high-dimensional, or uncertain problems through knowledge bases and 

fuzzy logic, and achieve fault tolerance through redundant data and self-correction mechanisms. 

However, the field faces challenges, including reliance on high-quality data, insufficient or noisy 

data, opaque decision-making processes due to "black box" big models, hardware and cost limitations, 

such as the cost of LIDAR and computational chips required for autonomous driving, and integration 

complexity, which has led to the need for unified standards and interfaces for cross-domain systems. 

The industry is lacking specifications and frequently encounters compatibility issues. There are also 

data privacy and machine ethics dilemmas yet to be resolved. 

In the future, intelligent control will continue to integrate technology and upgrade with AI by 

combining multimodal data and integrating reinforcement learning and environment perception 

technologies. It will enhance human decision-making and use AI more as a supporting tool. It will 

promote international AI guidelines and require transparency and traceability of high-risk scenarios. 

A unified interface specification is an inevitable trend for future intelligent control, and the industry 

will promote cross-field data standards to solve system compatibility issues. It will develop 

specialized control systems for specific scenarios. 

6. Conclusion and outlook 

This paper summarizes and introduces recent methods in intelligent control and their applications, 

including fuzzy control, neural network control, reinforcement control, and deep learning. It analyzes 

the development of intelligent control according to its advantages and challenges. Intelligent control 

technology improves the autonomous decision-making and self-adaptive capability of complex 

systems by integrating fuzzy logic, neural networks, learning control, and other artificial intelligence 

methods. Future research should focus on technology integration, greening, standardization, and 

ethical governance, while deepening vertical scenario applications. Academia and industry should 

collaborate to promote intelligent control towards higher autonomy, safety, and sustainability, and 

support intelligent manufacturing, smart cities, and other fields. 
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