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Abstract: Ever since R.A. Fisher proposed the Randomized Controlled Trial (RCT), causal 

inference has been formalized as a rigorous theoretical science. Causal inference has now 

shown potential and good results in many fields. Researchers are applying it to more complex 

and diverse domain scenarios. This has led to the progression of causal inference from 

statistical methods to machine learning, deep learning, and representation learning. Many 

different schools of thought have been born in this process, employing different algorithms to 

enhance the processing power and accuracy of causal inference methods. They all have their 

own theoretical merits and their own appropriate scenario areas. Therefore, this study hopes 

to systematically sort out these methods along the lines of timeline, method schools, etc., and 

establish an evaluation framework based on scenario-priority indicators, and then give an 

algorithmic decision matrix based on this framework to form an evaluation and decision 

system between scenario-indicator-algorithm. And in the end, a classical dataset is selected to 

validate the proposed decision matrix, which is hoped to facilitate the researchers. 
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1. Introduction 

1.1. Background 

The development of causal inference as a core methodology linking statistics and decision science 

has gone through three paradigm leaps. The early stages were based on Fisher's randomized 

controlled trials (RCTs) [1] and Rubin's potential outcomes framework [2] as the cornerstone of the 

gold standard system of evidence generation. However, the high cost and ethical constraints of RCTs 

gave rise to observational research methods, and the propensity score matching (PSM) method 

proposed by Rosenbaum & Rubin [3] presented an early option for fitting experimental studies from 

observational studies. PSM has shown reliable performance only in low-dimensional scenarios, but 

cannot be adapted to high-dimensional, complex scenarios with control of confounders [4]. Pearl's 

structural causal model [4] formalizes the intervention effect through the do-operator, suggesting a 

reliable way of screening for confounders based on causal diagrams, which gives the causal model a 

more structured character. However, the pre-construction of causal graphs relies heavily on a priori 

knowledge of the domain. It was not until the introduction of machine learning techniques that broke 

through the curse of dimensionality and the bottleneck of non-linear modelling of traditional methods. 

Currently, the integration of causal inference and machine learning presents multiple paths: as a tool 
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to improve estimation accuracy, e.g., the orthogonalization mechanism of DML [5], and as a subject 

to drive causal representation learning, e.g., counterfactual generation of CausalGAN [6] and so on. 

1.2. Research topic 

This study systematically sorts out machine learning-driven causal inference methods and constructs 

a three-dimensional classification framework to provide a detailed division of tasks in different 

scenarios. This study categorizes these causal inference methods from a more nuanced perspective: (1) 

from the type of task, whether it is a quantitative estimation of causal effects or discovery of causal 

structure; (2) from the characteristics of the task data, e.g., whether it is temporal type of data or 

high-dimensional and complex data; and (3) from the theory of the algorithms, the theoretical 

framework of the algorithms that allow them to implement causal inference, in terms of the way the 

algorithms are used. And the perspectives of (1) and (2) will provide guidance for constructing the 

algorithm evaluation system, the decision matrix. 

The core goal is to establish a three-dimensional selection criterion of 

"algorithm-scenario-evaluation" to solve the problem of fragmentation of the evaluations in the 

current research [5], and hopefully to provide researchers with a reference guide for model selection. 

1.3. Research methodology 

Systematically combing mainstream causal inference methods combining machine learning (deep 

learning/deep representation learning), evaluating the performance of algorithms through a 

multi-indicator evaluation framework on the basis of which a decision matrix is constructed: (1) 

Establishment of the evaluation system: giving the corresponding priority relationship between the 

evaluation indicators of different algorithms and the corresponding domains, and what domains 

should be given priority to what indicators. (2) Decision Matrix Establishment: Based on the 

evaluation system, construct the decision matrix, and select suitable algorithms according to different 

domain requirements and data characteristics. (3) Benchmarking analysis: IHDP open standard 

dataset cross-model comparison to verify the universality of the decision matrix. The main indicators 

include PEHE (individual processing effect error), ATE deviation, do-SHAP causality 

interpretability. 

1.4. Research contribution 

This study makes innovative contributions across three dimensions: Theoretically, it establishes a 

systematic overview of machine learning-driven causal inference algorithms, providing a 

comprehensive framework for the field; Methodologically, it develops a multi-criteria decision 

matrix for causal model selection, enabling scientifically grounded decision-making by holistically 

weighing algorithmic properties, application scenarios, and task requirements; Practically, it 

validates the framework’s universality through a case study in classical medical domains, 

demonstrating its operational feasibility and effectiveness in real-world settings. Together, these 

contributions form an integrated research cycle spanning theoretical foundation, methodological 

innovation, and empirical validation. 

2. Literature review 

2.1. Early-aged statistical methods 

Beginning with R.A. Fisher's introduction of the RCT [1], statistics formally began to deal with the 

problem of causal inference. The central task was to control for confounders. Fisher did this by 

directly equalizing confounders across subgroups through human intervention. However, this is not a 
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very generalizable approach because the researcher often cannot decide whether to intervene or not. 

So Philip proposed the instrumental variable (IV) [7], which now seems to be the so-called mediating 

variable, with the help of which the effect exerted by the intervention is obtained indirectly. Other 

researchers have tried to control for confounders in this way by including in the regression analysis all 

the factors considered likely to be confounders under the current observation. Obviously regression 

analysis cannot deal with unanticipated factors, and Cochran [8] modeled the effect of the RCT 

through the idea of stratification, making the treatment and control groups comparable within each 

stratum. Such an approach creates problems that are difficult to deal with once there is too much 

confounders. 

2.2. Improvement of early-aged statistical methods  

2.2.1. Potential outcomes framework 

Rubin gives concepts in his theory that are used to this day. Rubin gives a formal mathematical 

expression of intervention in his doctrine and gives definitions of observed, potential, and 

counterfactual outcomes based on the definition of intervention. The intervention-based definition 

divides all the variables in the character into pre-intervention and post-intervention variable 

According to the association of the front and back pieces of causality. From Rubin's theoretical 

framework it is possible to derive a mathematical expression for the so-called causal effect: 

 ATE = 𝔼[Y(W = 1) − Y(W = 0)] (1) 

The potential causation framework [2] makes three important assumptions: (1) The stable unit 

intervention value assumption. In layman's terms, this means that there is independence between each 

of the smallest object-units in causal inference; each intervention takes only one form and leads to 

only one fixed outcome, and there will not be multiple outcomes. (2) Ignorable assumption. In 

layman's terms, the significance of this assumption is that for a given unit of the pre-intervention 

variable, the allocation strategy of the different interventions of Akin is considered to be the same. 

This assumption is the theoretical basis for non-confounding. (3) Positivity. In simple terms, this 

means that for any pre-intervention variable, the intervention is indeterminate and there is variability. 

Based on these three assumptions, we can obtain mathematical definitions about all intervention 

effects: 
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Taken together, causal inference in this framework centers on estimating the average potential 

intervention outcome and control outcome on a subgroup. And this estimate is affected by 

confounding variables. Thus, the difficulty of the task migrates to how to eliminate the effects of 

confounders. To eliminate the effect of confounding factors, researchers have worked out different 

solutions. One of them is to address the selection bias induced by the confounders by fitting an 

unbiased subgroup and eliminating the confusion. This category is represented by methods such as 

propensity score matching, inverse probability weighting, and methods based on representation 

learning. The other class of methods deals directly with biased data and corrects the results after 

obtaining them. This class is represented by meta-learning methods. We will continue to refer to these 

methods later in this discussion. 

Rubin's [2] causal model linked individual potential outcomes Yi(T) to individual treatments Ti 

and individual confounders Xi to formalize the causal effects of RCT through the potential outcome 

framework, which provides theoretical underpinning for RCT, and serves as a theoretical framework 

that guides a series of subsequent new approaches to causal inference, providing them with an 

explanatory basis. 

2.2.2. Structural causal modeling 

 

Figure 1: Three basic structures of the Structural Causality Model 

Pearl [4] developed a more structured and understandable theory, the Structural Causality Model. 

Pearl improved on Rubin's theory. It can be found that Rubin's theory can only change one variable at 

a time and only observe changes in a single variable. The key idea is to introduce the prior knowledge 

of domain experts to construct a priori conditionally independent distributions simplifying the joint 

distribution. Pearl developed a theory that could handle more variables and be clearer. Specifically, 

Pearl gives the front-door criterion, back-door criterion, instrumental variables, which are reflected in 

the DAG as V-structure, common parent structure, and cascade structure as shown in Figure 1. With 

the d-separation method given by Pearl, researchers can use Bayesian networks to quickly build up 

model presets. Researchers can use Bayesian networks to quickly build up model presets. However, 

relationships in Bayesian networks are not equivalent to causal relationships. To truly characterize 

causal relationships, one also needs to resort to the potential causal framework. Pearl [4] introduced 

exogenous variables to solve this problem. 

Pearl's combines do-calculus with the SCM to formalize intervention effects through the 

intervention distribution P(Y|do(A)), making SCM a clearer demonstration of true causality than 

SEM, and more rigorously defined. 
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2.2.3. Comments and evaluation 

Rubin and Pearl's theory systematized the theory of causal inference to the point where causal 

inference became a rigorous discipline. The theories of the two also became the classic theories in the 

field, continuing to give theoretical justification for subsequent research and providing ideas for 

subsequent methodological design. However, there are limitations to their approach. Subsequent 

researchers have encountered different problems along the lines of Rubin and Pearl's approach when 

dealing with more complex tasks with larger amounts of data. For example, the PSM approach was 

not adapted to the later, more complex scenarios, and Stuart's [9] meta-analysis showed that PSM's 

balancing efficiency declined by 37%-52% (95% CI: 28.6-61.3) when confounders’ dimensionality 

exceeded 30, and it was unable to deal with unobserved confounders variables. And Hernán [10] 

found that structural equation modelling parameter estimation errors amounted to 68.7% (vs DML, 

p<0.001) when causal maps contained more than five mediating variables, exposing the vulnerability 

of models to be set up incorrectly in advance. These prompted a revolution in methodology. 

2.3. Combining causal inference methods with machine learning 

2.3.1. Combining causal inference with classical machine learning 

Early causal inference combined with classical machine learning algorithms was designed to address 

the limitations of traditional statistical methods that perform poorly in high-dimensional situations 

and non-linear relationships, so the idea was to first utilize the machine learning algorithm's ability to 

process high-dimensional data, and then adapt that machine learning algorithm to have the theoretical 

characteristics of causal inference: i.e., the ability to efficiently control confounders, and the ability to 

perform counterfactual inference. Based on the ideas mentioned above, the researcher developed four 

approaches.  

The first one is the extension and generalization of the propensity score model: applying Gradient 

Boosting Tree (GBM) [11] instead of Logistic Regression to estimate the propensity score, or 

adopting Generalized Propensity Score Matching (GPSM)[12], the core idea is to extend the previous 

PSM with machine learning algorithms, so as to make it build up the propensity score estimation of 

higher accuracy in more high-dimensional scenarios, clearly an inheritance of the potential causal 

framework. Simply put, GPSM has three processes. The first step is to calculate the probability that 

an individual is assigned to a treatment group given the covariates and to give a criterion (propensity 

score) indicating the similarity of these individuals to the treatment group; in the second step, 

different algorithms are used to obtain the samples of the control group that are nearest neighbors to 

the treatment group; and in the third step, the ‘neighbors’ obtained in the second step are computed to 

obtain the Treatment effects. 

 

Figure 2: The double machine learning method 
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The second method is another inheritance of the potential outcome framework what is known as 

the double robust method. Several typical algorithms are derived from this approach: Targeted 

Maximum Likelihood Estimation (TMLE) [13] avoids bias by correcting the initial estimation with 

an influence function, which has the advantage of not only utilizing the information within the data to 

estimate the parameters, but also by the additional "targeting" of the It has the advantage of not only 

using the information within the data to estimate the parameters, but also through additional 

"targeting" to adjust the estimate for specific parameters, which makes it highly robust. Augmented 

Inverse Probability Weighting (AIPW) [14] combines inverse probability weighting and outcome 

regression to synthesize the propensity score model and the outcome model, which makes it possible 

for as long as one of the models is correct, the then the estimation will be unbiased. We take DML as 

an example. As shown in Figure 2, it can be seen that both dual robust methods require the fitting of 

two models. The difference lies in how the effects of fitting the two models are handled. Double 

Machine Learning (DML), on the other hand, uses orthogonalization to process the results. DMLs [5] 

idea of eliminating confounders bias was achieved by fitting the treatment model and the outcome 

model in two stages and orthogonalizing the residuals of the two fits. 

The third method heterogeneous treatment effect model is specifically designed to estimate 

treatment effects on subgroups and still based on potential causal framework. With the design idea of 

heterogeneity treatment, researchers have developed different approaches: optimizing the splitting 

rules of random forests to obtain causal forests. Meta-learners provide diverse choices, giving 

frameworks, such as S-learner, T-learner, etc., where researchers reduce the bias and variance by 

efficiently combining classical machine learning algorithms. Similarly, meta-learners is a framework. 

Different machine learning algorithms can also be chosen as per the need. But in a nutshell, in this 

framework, the formula for calculating ATE, ITE is as follows: 

 τ = 𝔼{Y(1) − Y(0)} (6) 

 τ (xi) = 𝔼 (Yi(1) − Yi(0)|xi) = 𝔼 (𝔼 (Y|T = 1, xi) − 𝔼 (Y|T = 0, xi)) (7) 

In this study, the classic T-learner was chosen as an example to explain the practice of 

meta-learners. The central task was to fit the expectations of the two outcome variables for the 

treatment and control groups. That is, the following expression: 

 
μ1 (xi) ≔ 𝔼 (Y|T = 1, xi)

μ0 (xi) ≔ 𝔼 (Y|T = 0, xi)
 (8) 

And Bayesian Additive Regression Trees (BART) [15] can fit quite complex data structures using 

additive combinations of regression trees, which has a unique advantage when facing complex 

scenarios. 

Unlike the first three methods, the fourth method inherits the idea of SCM. The fourth approach is 

an inheritance and extension of the classical theory of instrumental variables. Such an idea can be 

combined with many previously summarized algorithms, such as Double Machine Learning (DML) 

with IV, BART-IV, random forest-IV, and so on. Combining the idea of instrumental variables 

allows the powerful predictive ability of these machine learning to be utilized. 

2.4. Fusion of causal inference and deep learning 

As machine learning-driven causal inference methods have come to fruition in a wider range of 

domains, researchers have applied causal inference to datasets with larger data volumes and more 

complex features. This has led to difficulties in combing causal structures with a priori knowledge, 
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and the sheer volume of data has made feature engineering extremely difficult. The researcher turned 

to deep learning for help. Firstly, with deep learning's effective capture of complex interaction effects 

between treatment variables and confounders, researchers can generate counterfactual predictions by 

learning dataset’s features. CEVAE [16] applies the idea of adversarial generation to causal inference 

for the first time. It uses VAE to model potential confounders, thus providing more accurate estimates 

of causal effects in the presence of unobserved confounders. After this, the idea of adversarial 

generation was also applied to causal inference. GANITE [17] revolutionized causal inference by 

introducing a generator-discriminator architecture that explicitly gave counterfactual results. Each of 

these two approaches derives many variants based on specific task scenarios, demonstrating the 

potential of deep learning in the field of causal inference. Secondly, deep representation learning also 

shows advantages in removing confounders effects. This approach typically learns common features 

between data from different variables in a dataset, and then takes a different approach to applying 

those features. For example, TARNet is like adding a simple feature sharing representation layer to 

T-learner's feature layer. Based on TARNet, in order to more accurately balance the distribution of 

the trained and control groups in the representation space, CFRNet [18] corrects the distribution 

distance measuring the trained and control groups by adding an extra loss on top of the TarNet's loss, 

which is called integral probability metrics (IPM). In order to more accurately balance the distribution 

of the trained and control groups in the representation space, we can add an additional loss to the 

TARNet's loss to correct the distance between the distribution of the trained and control groups, 

which is called integral probability metrics (IPM). DragonNet [19] uses this feature value to eliminate 

the confounders effect by redistributing data from different treatment groups with the help of the idea 

of propensity score matching; and TARNet [20] models the treatment group and the control group 

separately, separating the shared representation and the treatment effect. Thirdly, the framework of 

instrumental variable approach has always been advantageous, which promotes researchers to apply 

deep learning methods to the framework of instrumental variables. The specific method involved may 

simply be the use of deep learning as an alternative to traditional methods to study correlation, 

combined with the theory of causal inference for validation, so it will not be repeated here. The most 

important thing I would like to mention at this stage of this study is time-series causal inference. 

Causal inference on time-series data is a theoretical creation. Previous methods have tended to 

address static problems by design and failed to address dynamic interventions with long-range 

dependencies. Time-series data is different from the general static data of a certain time cross-section, 

the premise of independent and homogeneous distribution is no longer valid; in order to deal with 

autocorrelation and dynamic changes in time-series data, the structure of convolution and recursion 

provides a solution to capture time-series dependencies. Convolutional Neural Network (CNNs) for 

the first time incorporate the method of Recurrent Neural Networks (RNNs), and the recursive 

structure helps to capture temporal dependencies. Subsequent researchers applied the classical 

conclusions of SCM to CRN, enhancing its ability to face complex scenarios. Dynamic-TE [21], on 

the other hand, marks a shift from causal effect estimation at a single point in time to multi-stage 

dynamic treatment of effect estimation, which captures interactions between different points in time 

through staged modelling of the treatment effect and supports long-term effect analysis. 

2.5. Causal discovery & automated reasoning 

With methodological advances, researchers realized that causal structures predicated on a priori 

knowledge could not be entirely factual. Therefore, attempts have been made to use algorithms to 

autonomously uncover causal structures from data. This gave rise to causal inference, which, unlike 

all the previously mentioned methods, has the core tasks of causal structure learning, causal direction 

identification, hidden variable handling and dynamic causal modelling, and is no longer about 

eliminating confounders and counterfactual reasoning. Causal discovery has different ideas, but they 
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all inherit the idea of structural causal modeling. Researchers naturally thought of conditional 

independence testing, and on this idea they invented the PC [22] algorithm and extended the FCI [23] 

algorithm that can deal with hidden variables. However, the computational complexity of such a 

method is too high, and it is not suitable for larger datasets; in order to improve such a problem, 

researchers try to search for the causal graph structure with the highest score through a scoring 

function, but such an algorithm is often caught in the problem of local optimality; for this reason, the 

method based on gradient optimization is proposed, and the accuracy of the method and the ability to 

capture complex scenarios are also greatly improved. Among them, DAG-GNN [24] combines graph 

neural networks and causal discovery to show excellent causal structure learning ability [24]. 

3. Evaluation framework establishment 

3.1. Multi-dimensional evaluation matrix 

There are multiple metrics for assessing the success of a causal inference task. This study will sort 

through these metrics to give an evaluation matrix for different scenarios. 

Table 1: Multi-dimensional evaluation matrix 

Domain Core requirement Indicator Chronological Need 

 
Individual efficacy prediction, 

treatment safety assessment 
  

Healthcare 
Individual efficacy prediction, 

treatment safety assessment 

PEHE, ATE error, 

E-Value 
None 

Business decision 
Resource allocation optimization, 

high value user identification 

Qini coefficient, 

strategy risk, 

AUUC 

None 

Social Sciences  

Unbiased estimation of group 

effects, interpretability of 

findings 

ATE Error, SMD, 

E-Value 
None 

Industrial cases 
Causal path identification, 

dynamic decision support 

Structure 

Hamming 

distance, dynamic 

AUUC 

Dynamic causal 

transmission, 

multi-stage 

intervention 

Causal study 

Verification of temporal causal 

discovery, counterfactual 

reasoning ability 

Time consistency 

error, 

counterfactual loss 

Time lag effects, 

long-term causal 

effects 

As Table 1 summarizes, this study briefly summarizes the core needs, priority assessment metrics 

and time-sequential relevance of causal inference in common domains. Industrial applications and 

basic causal research need to focus on temporal dynamic causation, such as fault diagnosis, temporal 

causal discovery, etc., and the priority evaluation indexes include dynamic AUUC (long-term benefit 

assessment) and temporal consistency error (stability of multi-stage effects); other fields (e.g., 

healthcare, business decision-making) focus on static causal effects, and the indexes focus on the 

precision of individual or group effects (e.g., PEHE, Qini coefficient). The following are some of the 

indicators used in the study. Generic indicators (e.g., Structural Hamming Distance, E-Value) are 

applicable to all domains, but time-series scenarios need to be extended with dynamic versions. The 

selection of metrics is driven by "core requirements", e.g., medical domains emphasize confounders 

control (E-Value), industrial applications rely on causal structure identification (Structural Hamming 

Distance). 
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3.2. Construction of decision-making method 

Table 2: Metics of the decision-making method 

Type of task Data characterization 
Recommendation 

algorithm 
Key indicators 

Individual Treatment 

Effect (ITE) 

High-dimensional 

features, static time 

cross sections 

Causal Forest, X-Learner, 

BART 
PEHE, AUUC 

Unstructured data 

(e.g., images, text) 
CEAE, CFRNet, GANITE 

Counterfactual losses, 

factual losses 

Average Treatment 

Effect (ATE) 

Observational data, 

presence of 

instrumental 

variables 

DML, DeepIV, TMLE 
ATE error, Stage 1 

F-value 

High-dimensional 

mixing, small 

samples 

LASSO+PSM, Dual 

Robustness Modelling 

(AIPW) 

SMD, Coverage Rate 

causal discovery 
Static data, linear 

relationships 

PC algorithm, 

LiNGAM,FCI algorithm, 

DeepIV  

Structure Hamming 

Distance, F1-Score 

 

High-dimensional 

non-linear, dynamic 

time-series data 

NOEARS, DAG-GNN, 

DYNOTEARS 

Dynamic AUUC, time 

consistency error 

Counterfactual 

generation 

Lack of 

counterfactual 

samples, 

unstructured data 

GANITE, CEVAE, 

SparseVAE 

Counterfactual loss, 

generating sample 

visualizations 

dynamic causal 

effect 

Multi-stage 

interventions, 

chronological 

dependence 

CRN, SCM-RNN, Causal 

Transformer 

Time consistency 

error, dynamic AUUC 

Robustness 

verification 

Presence of 

unobserved mixing, 

sensitivity analysis 

needs 

E-Value framework, 

CEVAE 

E-Value, sensitivity 

interval 

Strategy 

Optimization 

Individualized 

decision-making 

under resource 

constraints 

Causal Forests, Dragonnet 
Gini index, strategy 

risk 

As Table 2 shows, this matrix is based on two core dimensions, task type and data characteristics, to 

provide researchers with a quick reference from problem definition to method landing. Task type 

determines the objectives (e.g., individual effects, causal discovery), and data characteristics 

constrain the method selection (e.g., high-dimensional, time-series, unstructured). Methods that cover 

different implementation ideas of causal inference and combine different AI algorithms are covered, 

and methods mentioned in previous literature reviews are also addressed. 



Proceedings	of	CONF-SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ23524

137

3.3. Testing of decision-making methods 

3.3.1. Application of standard datasets in healthcare 

In this study, the classical dataset IHDP is selected to complete the validation of the algorithm 

selection matrix. The IHDP dataset is a semi-synthetic dataset used to investigate the causal effect of 

"expert home visits" (a binary treatment variable) on "infant cognitive test scores" (a continuous 

outcome variable). The raw data were constructed based on a randomized controlled trial, but were 

biased to remove part of the intervention group to simulate selection bias in observational studies. 

The core task is to estimate the average treatment effect (ATE), i.e., the average impact of home visits 

on cognitive scores. The IHDP contains 747 samples (139 in the intervention group and 608 in the 

control group) and contains 25 confounders (e.g., infant birth weight, mother's age, education level, 

etc.) covering both numerical and categorical characteristics. The IHDP contains 747 samples (139 in 

the intervention group and 608 in the control group) and contains 25 covariates (e.g., infant birth 

weight, mother's age, education level, etc.) covering both numerical and categorical characteristics. 

The main processing difficulties are: (1) containing 25 potential confounders with possible redundant 

features (e.g., highly correlated indicators of maternal and infant health. (2) Selection bias: the 

intervention group sample was biasedly screened, resulting in an uneven distribution of confounders 

between the treatment and control groups (e.g., a higher proportion of low-birth-weight infants in the 

intervention group) (3) Unobserved confounders: the data did not explicitly include all confounders 

variables (e.g., household economic status), and relied on robustness methods or sensitivity analyses. 

3.3.2. Ihdp processing analysis 

Combining the previous analyses of the characteristics of the IHDP dataset, based on the algorithmic 

decision matrix mentioned earlier, we can get the deep learning methods used by the CEVAE, 

CFRNet, BART and DML frameworks, which should all be selected according to the idea of the 

decision matrix. The processing results of these methods are compared with other methods as follows. 

This comparison contains the methods used by other researchers as well as the processing methods 

added for use in this study. 

Summarizing the results of other researchers' implementations and ours in Table 3, a comparison 

reveals that the processing of these methods is roughly in line with our expectations. Taken together 

CFRNet is in the best position, with excellent performance in both metrics. The rest of GANITE, 

BART, CEVAE, and DML (using MLP) show little difference in performance; while Causal Forest 

and kNN are the worst performers, with both metrics performing poorly. It basically confirms that our 

algorithmic decision matrix. 

Table 3: Summary of the effects of processing the IHDP dataset 

Algorithms used 
PEHE values (characterizing the 

precision of individual effects) 

ATE error (characterizing overall 

effect accuracy) 

methods √ϵ
PEHE

 ϵ
{ATE}

 

CEVAE 2.7±0.1 0.34±0.01 

CFRNet 0.76±0.02 0.27±0.01 

BART 2.3±0.1 0.34±0.02 

kNN 4.10 ± 0.2 0.79±0.05 

GANITE 2.4 ± 0.4 0.52 ± 0.2 

Causal Forest 3.34±0.003 0.6214±0.1 

DML (using MLP) 2.66±0.007 0.0885±0.00 
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BNN-4-027 5.60±0.30 0.3±0.0 

BNN-2-2 1.6±0.10 0.3±0.0 

 

Figure 3: Distribution of ITE for CausalForestDML and DML with MLP 

 

Figure 4: Mapping of processed ITE to actual ITE for two DML algorithms 

Figure 3 and Figure 4 show the specific processing effect images of the two DML algorithms 

added for use in this study, this is the result of the processing of this study using conventional 

CausalForestDML and DML using MLP as the fitting algorithm. The DML algorithm using MLP has 

highest accuracy (smallest ϵ{ATE}), and the prediction points are closer to the ideal 45° demarcation 

line in the prediction of ITEs (smaller √ϵPEHE). The DML using MLP also demonstrates a stronger 

ability to capture heterogeneity effects in the distribution of ITEs. 

4. Discussion 

4.1. Advantages of current methods 

Existing causal inference methods show diverse advantages in different scenarios. Experimental 

causal inference provides unbiased estimates of causal effects through randomized experiments and 

is the gold standard for assessing causality, but its application may be limited by ethical or cost 

constraints. Methods such as propensity score matching (PSM) and instrumental variable methods in 

observational studies provide alternatives for situations where randomized experiments cannot be 

implemented: PSM reduces selection bias by matching similar individuals, and instrumental variable 

methods are effective in addressing endogeneity problems caused by unobserved confounders. In 

recent years, causal inference methods incorporating machine learning (e.g., CFRNet, Causal Forests, 

and GANITE) have further improved the ability to deal with high-dimensional and complex data, and 

have significantly improved the precision of estimating heterogeneous treatment effects. In addition, 

Table 3: (continued). 
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Double Robust Methods (DRMs) combine the advantages of propensity score and outcome 

regression models, where a consistent causal effect estimate can be obtained with one of the two 

models correctly specified, a property that enhances the robustness and applicability of the methods. 

Causal discovery algorithms (e.g., PC algorithm, GIES, and LiNGAM), on the other hand, 

automatically infer the causal structure among variables from the data, providing a powerful tool for 

exploring unknown causal relationships, which is a unique advantage especially in the absence of a 

priori knowledge. Time-series causal inference algorithms for time-series data (e.g. Granger causality 

analysis, dynamic causal modelling and deep learning-based time-series causal inference methods) 

capture causal relationships between variables over time, and are applicable in areas such as finance, 

climate science and neuroscience. Together, these methods form a rich and complementary toolbox 

for causal inference, driving a wide range of applications of causality research across multiple 

disciplines. 

4.2. Existing problems and challenges 

Each of the causal inference methods mentioned above has its own unique strengths, but they also 

each have certain limitations. All of the algorithms that have inherited the idea of instrumental 

variables need to find a valid instrumental variable that only indirectly affects the outcome variable 

by affecting the treatment variable, and how to choose such a variable is the key to solving the 

problem; if the wrong variable is chosen, then the results will be very different from the real situation. 

Dual robustness methods, while providing a way to increase robustness, still rely on the premise that 

at least one model (either the propensity score model or the outcome regression model) is correctly 

specified, and if both models are incorrectly specified, this may lead to a loss of efficiency or other 

problems even if an error in either model does not affect the consistency of the final estimates. For 

time-series causal inference algorithms, such as Granger causality analysis, although it relies on 

predictive power in time-series data to infer causality, this is not equivalent to true causality because 

it cannot rule out common external influences and because traditional time-series causal inference 

methods may perform poorly for complex nonlinear dynamic systems. Causal discovery algorithms 

infer causal structure primarily based on statistical associations, and thus may have difficulty 

distinguishing between direct causality and spurious correlation due to potential confounders, while 

most such algorithms assume that the data generation process follows a particular form, which may 

not be applicable to all types of data or application scenarios. These algorithms have limitations or 

rely on assumptions that may not be true. 

5. Conclusion 

This study comprehends the development history of causal inference methods, and systematically 

combs the classical and mainstream methods in different periods, discusses in detail the ideological 

framework, suitable application scenarios, and advantageous characteristics of different methods; 

explores what indexes should be prioritized to measure the effect of algorithms in different task 

scenarios, and establishes an algorithmic selection recommendation matrix based on the foregoing, 

with a view to providing a quick and easy way for less-skilled researchers to Select the corresponding 

algorithm according to the task scenarios, and selected the classical dataset IHDP to validate our 

selection matrix, and get better results after validation. There are some areas for improvement in the 

current study: in the future, more datasets with different task requirements and data characteristics 

should be added to do more validation of the algorithm selection matrix and verify its generality; in 

addition, this study pays insufficient attention to some cutting-edge causal inference methods, and 

does not have a broad enough horizon for predicting future prospective studies. 
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The future development of causal inference will show the following trends: firstly, more advanced 

algorithms will provide stronger computational fitting capabilities for the theoretical framework of 

causal inference, while dynamic causal inference (e.g., temporal causal modelling, causal 

decision-making in reinforcement learning) will address the problem of multiple interventions and 

long-term effects in complex systems, and will be more widely applied in more fields. Second, the 

combination of federated learning frameworks and differential privacy techniques (federated causal 

inference) will promote privacy-preserving analyses of multi-source data under the current trend of 

distributed computing becoming mainstream, while fairness-constrained causal models will ensure 

unbiased estimation in different groups and enhance the ethical compliance of the models. Third, 

causal inference will take on an automated and instrumented character in the future, with companies 

such as Google inheriting and encapsulating key algorithms for causal inference into open-source tool 

libraries, lowering the threshold of causal inference use and supporting rapid application by 

non-experts in healthcare, policy, and other fields. Overall, causal inference will be more relevant to 

real-world specific problems in the future (dynamic, complex qualities), more instrumental and 

low-threshold, and becoming a more general basic tool. 

References 

[1] Box, J. F. R.A. Fisher and the Design of Experiments, 1922–1926. Am. Stat. 1980, 34 (1): 1–7.  

[2] Rubin, D. B. Estimating Causal Effects of Treatments in Randomized and Nonrandomized Studies. J. Educ. Psychol. 

1974, 66 (5):688–701.  

[3] Rosenbaum, P. R.; Rubin, D. B. The Central Role of the Propensity Score in Observational Studies for Causal 

Effects. 

[4] DAWID, A. P. Causal Diagrams for Empirical Research: Discussion of "Causal Diagrams for Empirical Research" 

by J. Pearl. Biometrika, 1995, 82 (4): 689–690.  

[5] Chernozhukov, V.; Chetverikov, D.; Demirer, M.; Duflo, E.; Hansen, C.; Newey, W.; Robins, J. Double/Debiased 

Machine Learning for Treatment and Structural Parameters. Econom. J. 2018, 21 (1), C1–C68. 

https://doi.org/10.1111/ectj.12097. 

[6] Hill, J. L. Bayesian Nonparametric Modeling for Causal Inference. J. Comput. Graph. Stat. 2011. 

https://doi.org/10.1198/jcgs.2010.08162. 

[7] The Tariff on Animal and Vegetable Oils. Philip G. Wright | Journal of Political Economy: Vol 38, No 5. 

https://www.journals.uchicago.edu/doi/abs/10.1086/254144 (accessed 2025-04-15). 

[8] Cochran, W. G.; Chambers, S. P. The Planning of Observational Studies of Human Populations. J. R. Stat. Soc. Ser. 

Gen. 1965, 128 (2): 234–266.  

[9] Stuart, E. A. Matching Methods for Causal Inference: A Review and a Look Forward. Stat. Sci. Rev. J. Inst. Math. 

Stat. 2010, 25 (1), 1–21. https://doi.org/10.1214/09-STS313. 

[10] Causal Inference: What If (the book) — Miguel Hernán. https://miguelhernan.org/whatifbook (accessed 

2025-04-15). 

[11] Friedman, J. H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29 (5), 1189–

1232. 

[12] Abadie, A.; Imbens, G. W. Large Sample Properties of Matching Estimators for Average Treatment Effects. 

Econometrica 2006, 74 (1): 235–267.  

[13] Van Der Laan, M. J.; Rose, S. Targeted Learning: Causal Inference for Observational and Experimental Data; 

Springer Series in Statistics; Springer: New York, NY, 2011.  

[14] Estimation of Regression Coefficients When Some Regressors are not Always Observed: Journal of the American 

Statistical Association: Vol 89, No 427. https://www.tandfonline.com/doi/abs/10.1080/01621459.1994.10476818 

(accessed 2025-04-15). 

[15] BART: Bayesian additive regression trees. 

https://projecteuclid.org/journals/annals-of-applied-statistics/volume-4/issue-1/BART-Bayesian-additive-regressi

on-trees/10.1214/09-AOAS285.full (accessed 2025-04-15). 

[16] Louizos, C.; Shalit, U.; Mooij, J. M.; Sontag, D.; Zemel, R.; Welling, M. Causal Effect Inference with Deep 

Latent-Variable Models. In Advances in Neural Information Processing Systems; Curran Associates, Inc., 2017; 

Vol. 30. 

[17] Yoon, J.; Jordon, J.; Schaar, M. van der. GANITE: Estimation of Individualized Treatment Effects Using 

Generative Adversarial Nets; 2018. 



Proceedings	of	CONF-SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ23524

141

[18] Chauhan, V. K.; Molaei, S.; et al. Adversarial De-Confounding in Individualised Treatment Effects Estimation. In 

Proceedings of The 26th International Conference on Artificial Intelligence and Statistics; PMLR, 2023; pp. 837–

849. 

[19] Shi, C.; Blei, D.; Veitch, V. Adapting Neural Networks for the Estimation of Treatment Effects. In Advances in 

Neural Information Processing Systems; Curran Associates, Inc., 2019; Vol. 32. 

[20] Shalit, U.; Johansson, F. D.; Sontag, D. Estimating Individual Treatment Effect: Generalization Bounds and 

Algorithms. In Proceedings of the 34th International Conference on Machine Learning; PMLR, 2017; pp. 3076–

3085. 

[21] Ghosh, S.; Feng, Z.; Bian, J.; Butler, K.; Prosperi, M. DR-VIDAL-Doubly Robust Variational 

Information-Theoretic Deep Adversarial Learning for Counterfactual Prediction and Treatment Effect Estimation 

on Real World Data. In AMIA Annual Symposium Proceedings; 2023; Vol. 2022, pp. 485. 

[22] Spirtes, P.; Glymour, C. N.; Scheines, R. Causation, Prediction, and Search; MIT Press, 2000. 

[23] An Algorithm for Causal Inference in the Presence of Latent Variables and Selection Bias | Computation, Causation, 

and Discovery | Books Gateway | MIT Press. 

https://direct.mit.edu/books/edited-volume/4789/chapter-abstract/218906/An-Algorithm-for-Causal-Inference-in-t

he-Presence?redirectedFrom=fulltext (accessed 2025-04-15). 

[24] Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A. L. Semantic Image Segmentation with Deep 

Convolutional Nets and Fully Connected CRFs. arXiv June 7, 2016.  


