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Abstract: In response to the problem that most current automatic modulation recognition 

models cannot achieve high recognition rates while maintaining a certain training speed, this 

study proposes a neural network model based on depthwise separable convolution, residual 

connection, and channel attention mechanism. By using residual structures and Swish 

activation to alleviate gradient problems to support deep network training, dynamically 

optimizing feature channels using SE modules, and significantly reducing computational 

costs through depthwise separable convolution and global pooling, the model not only 

achieves lightweighting and ensures a certain training speed, but also has certain feature 

extraction capabilities, which can achieve high recognition rates. This study conducted 

comparative experiments to train different models in five SNR environments on the DeepSig 

RadioML 2018.01A dataset. The CNN_ResNet model can achieve a recognition rate of 92.67% 

in a 10dB environment, which is 20.07% higher than the basic CNN model. The results of the 

experiments demonstrate that the improved model exhibits a significantly higher recognition 

rate compared to other models, while maintaining a certain training speed. 

Keywords: residual network, automatic modulation recognition, channel attention mecha

nism, convolutional neural network 

1. Introduction 

AMR technology empowers receiving devices to identify the modulation mode of unknown 

received signals in non-cooperative communication environments, and it holds significant 

application value in the field of wireless communication [1]. Additionally, Automatic Modulation 

Recognition (AMR) technology is pivotal in both military and civilian communication domains, 

playing a crucial role in various areas such as spectrum monitoring, cognitive radio, and signal 

control [2-3]. 

In recent years, considering the flexibility of deep learning multi-layer neural nonlinear 

transformation processing and various neural network concatenation methods, more and more deep 

learning based automatic modulation recognition model cameras have emerged. Throughout 2024, 

lightweight ICTNeT models based on convolutional neural networks and transformers, hybrid 

neural network models based on singular value decomposition, convolutional neural networks, and 

SE modules, as well as low signal-to-noise ratio models based on residual networks and 

transformers, have emerged successively [4-6]. 
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Overall, the previously proposed automatic modulation recognition models have simulated large 

datasets in a specific signal-to-noise ratio environment and achieved a certain level of recognition 

accuracy and modulation speed. However, various types of networks can only achieve a certain 

outstanding function locally, and rarely can they achieve high recognition rates across different 

signal-to-noise ratio environments or maintain high recognition speeds while achieving 

considerable recognition rates. 

In response to the aforementioned issues, this study proposes a fusion decision-making scheme 

based on convolutional neural networks, residual networks, and attention mechanisms, building 

upon previous experiments. In low signal-to-noise ratio environments, it aims to achieve high 

recognition rates while also ensuring a certain level of operating speed. To verify the accuracy of 

the established model in modulation recognition, this experiment chose to validate it on the 

DeepSig RadioML 2018.01A public dataset. 

2. Model preparation 

2.1. CNN 

The diagram depicting the architecture of the convolutional neural network is presented in Figure 1. 

 

Figure 1: Convolutional neural network structure diagram 

CNN, a feedforward neural network that integrates convolutional computation, has a deep 

architecture and is one of the key algorithms in deep learning [7-8]. It is built upon the visual 

perception mechanism of living organisms and can execute both supervised and unsupervised 

learning tasks. CNN is primarily made up of an input layer, a convolutional layer, a pooling layer, a 

fully connected layer, and an output layer. 

The convolutional layer is responsible for extracting features from the input data, which includes 

several convolutional kernels. Each element of a convolutional kernel corresponds to a weight 

coefficient and a bias, similar to a neuron in a feedforward neural network. While operating, the 

convolutional kernels scan the input features in a systematic manner. They carry out matrix element 

multiplication and summation on the input features within the receptive field, followed by the 

addition of the bias value. 

Taking two-dimensional convolution kernels as an instance: 

Zl+1(i,j)=[Zl  ⊗ ωl+1](i,j)+b= 

 ∑ ∑ ∑ [Zk
l (s0i + x, s0j + y)ωk

l+1f
y=1

f
x=1

Ki
k=1 (x,y)]+b        (1) 
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(i,j)∈{0,1,...,Ll+1}   Ll+1=
Ll+2p−f

s0
+1 

b represents the bias vector; Zl+1 and Zl are the convolutional input and output of the layer 

respectively, also known as the feature map;Ll+1 is the size of Zl+1, assuming that the feature maps 

have the same length and width; Z(i,j) corresponds to the pixels of the feature map; K is the number 

of channels in the feature map; f, s0 and p are convolution layer parameters, corresponding to the 

size of the convolution kernel, stride, and padding layers. The schematic diagram of 

two-dimensional convolution is shown in Figure 2. 

 

Figure 2: Example of two dimensional convolution 

Once the feature extraction process is completed in the convolutional layer, the resultant feature 

map is forwarded to the pooling layer. The pooling layer proceeds to select and refine features from 

the feature map by substituting the values of individual points with statistical measures from their 

surrounding areas. Following this, the fully connected layer integrates the selected features in a 

nonlinear fashion to produce an output that is subsequently sent to the output layer. The output layer 

then utilizes logic or normalization functions to derive the ultimate classification labels. 

2.2. ResNet 

Despite the advantages of CNNs in feature extraction, as the depth of the network increases, 

training can become unstable and convergence slow. Additionally, during backpropagation, the 

gradients may diminish, leading to the vanishing gradient problem and significantly complicating 

the training process. Consequently, this study opts to incorporate residual networks into the 

architecture of convolutional neural networks, utilizing ResNet's residual blocks to address the 

"gradient vanishing" and "degradation problems" inherent in deep network learning. 

ResNet, a convolutional neural network introduced by four researchers from Microsoft Research 

[9], employs internal residual blocks that bypass one or more layers via skip connections. This 

allows data from one layer to be directly passed to subsequent layers, thereby mitigating several 

issues associated with traditional deep CNNs. The schematic of the residual network link is 

depicted in Figure 3. 

 

Figure 3: Schematic representation of a residual network connection 
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Assuming the mapping in the original deep network is H (x), in ResNet, this mapping is 

represented as the residual function F (x) plus the direct skip connection of the input x: 

 H(x)=F(x)+x                    (2) 

Among them: 

• x represents the input; 

• F (x) represents the residual function to be learned, representing the change in input for a certain 

layer 

2.3. Attention mechanism (SE module) 

To enhance the network's representation capability, this study incorporated a channel attention 

mechanism. The concept of channel attention was introduced by Hu et al., and the core principle of 

SE is to adaptively recalibrate the feature responses of channel patterns by explicitly modeling the 

interdependence between channels [10]. The schematic representation of the channel attention 

mechanism is illustrated in Figure 4. 

 

Figure 4: Schematic diagram of channel attention mechanism 

The SE module is mainly completed by the following three operations: 

(1) Squeeze (Fsq): This segment is tasked with globally averaging and pooling the feature maps 

to produce a vector of size 1*1*C, with each channel being denoted by a numerical value: 

 𝑧𝑐=𝐹𝑠𝑞(𝑢𝑐)=
1

𝐻∗𝑊
∑ ∑ 𝑢𝑐

𝑊
𝑗=1

𝐻
𝑖=1 (𝑖. 𝑗)             (3) 

(2) Excitation (Fex): This segment is finalized by two fully connected layers, which acquire the 

necessary weight information via the learned weights W, and eventually exhibit the required feature 

correlation: 

 s=Fex(z,W)=σ(g(z,W))=σ(W2δ(W1z))          (4) 

(W1 and W2 are two fully connected layers respectively.) 

(1) Scale (Fscale): This section assigns weights to feature map U using the weight vector s 

generated in the second step, resulting in the desired feature map X̃, which has the same size as 

feature map U: 

 xc̃=Fscale(uc,sc)=scuc                    (5) 

After combining the channel attention mechanism, the model can enhance feature expression 

ability while maintaining computational efficiency and model simplicity. 
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3. Experimental description 

3.1. Dataset and experimental environment settings 

To accurately evaluate the performance of various AMR models in the experiment, this study 

selected the DeepSig RadioML 2018.01A dataset. The DeepSig RadioML 2018.01A dataset is an 

open-source dataset, widely utilized for wireless communication signal recognition, and was 

released by DeepSig Inc. [11]. It comprises signal samples from various modulation schemes at 

varying signal-to-noise ratios, making it suitable for training and evaluating both deep learning and 

machine learning algorithms. The configuration parameters of the DeepSig RadioML 2018.01A 

dataset are detailed in Table 1. 

Table 1: DeepSig RadioML 2018.01A dataset 

Dataset: DeepSig RadioML 2018.01A 

Data 

volume 
2555904(24*26*4096) 

Data 

format 
(1024,2) 

Modulation 

style 

OOK,4ASK, 8ASK, BPSK, QPSK, 8PSK, 16PSK, 32PSK, 16APSK,32APSK, 

64APSK, 128APSK, 16QAM, 32QAM, 64QAM,128QAM, 256QAM, AM-SSB-WC, 

AM-SSB-SC,AM-DSB-WC, AM-DSB-SC, FM, GMSK, OQPSK 

SNR range -20:32:2 

Single 

SNR 

sample size 

4096 

Key value 

pair 

information 

X: I/Q signal 

Y: Modulation type 

Z: SNR 

 

The dataset is segmented into a training set, a validation set, and a testing set for this experiment, 

with each set comprising 60%, 20%, and 20% of the data respectively. The experiment leverages 

the Keras 2.10.0 deep learning framework and operates with the Adam optimizer on an Intel (R) 

UHD Graphics environment. 

3.2. Comparative experimental setup 

In order to obtain more ideal experimental results, a total of three models were established in this 

experiment. The first is the basic CNN model, the second is the ReCNN model that combines CNN 

and ResNet, and the third is the new CNN_ResNet model that introduces channel attention 

mechanism in ResNet. Train three models in experimental environments with SNR of 0dB, 4dB, 

10dB, 14dB, and 20dB, and obtain the final confusion matrix and recognition rate. 

(1) CNN model: This model progressively uncovers the characteristics of input data by layering 

convolutional, pooling, Dropout, and fully connected layers, culminating in a classification 

prediction.The network architecture diagram of the CNN model is depicted in Figure 5. 
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Figure 5: Diagram of the CNN model's network structure 

(2) ReCNN model: This model incorporates a residual block following the convolutional block, 

which directly adds the input to the output via shortcut connections, thus facilitating the training of 

deeper networks. The diagram illustrating the network structure of the ReCNN model is shown in 

Figure 6. 

 

Figure 6: Network architecture diagram of ReCNN model  

(3) CNN_ResNet model: This model defines a new Swish activation function to replace the 

original ReLU activation function, improving the performance of the model. Meanwhile, this model 

incorporates channel attention mechanism on the basis of residual blocks and replaces the original 

convolutional layers with separable convolutional layers. In order to achieve better convergence 

speed while ensuring a certain recognition rate, this experiment adjusted the proportion of 

convolutional layers and residuals in the original model to obtain better experimental results. The 

schematic diagram of the residual network structure combined with channel attention mechanism is 

shown in Figure 7. The diagram depicting the network structure of the CNN_ResNet model is 

displayed in Figure 8. 
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Figure 7: ResNet with SE module schematic diagram 

 

Figure 8: Network architecture diagram of CNN_ResNet model 

3.3. Experimental results 

Train the three models mentioned above in experimental settings with signal-to-noise ratios (SNRs) 

of 0dB, 4dB, 10dB, 14dB, and 20dB using the DeepSig RadioML 2018.01A dataset, and obtain the 

resultant recognition rates. The recognition rates of the various models across different SNR 

environments are presented in Table 2. 
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Table 2: Recognition rates of different models in different SNR environments 

accuracy 
SNR 

0dB 4dB 10dB 14dB 20dB 

CNN 53.20% 62.10% 72.60% 76.90% 77.00% 

ReCNN 55.70% 70.30% 78.70% 77.50% 68.20% 

CNN_ResNet 59.78% 82.17% 92.67% 83.32% 79.01% 

 

The line chart comparing the accuracy of different models in different SNR environments is 

shown in Figure 9. 

 

Figure 9: Comparison of recognition rates of different models in different SNR environments 

From the graph, it can be seen that the recognition rates of the CNN model in different SNR 

environments are 53.20%, 62.10%, 72.80%, 76.90%, and 77.00%, respectively. The recognition 

rates of the ReCNN model are 55.70%, 70.30%, 78.70%, 77.50%, and 68.20%. Compared to the 

original basic CNN model, the ReCNN model transformed 2.50%, 8.20%, 5.90%, 0.60%, and -8.80% 

in different SNR environments. The CNN_ResNet model showed significant improvements of 

6.58%, 20.07%, 20.07%, 6.42%, and 2.01% compared to the CNN model in different SNR 

environments. It is evident from the experimental data that the ReCNN model only improves the 

recognition rate of the model in certain SNR environments, but the results are not satisfactory. The 

CNN_ResNet model showed good improvement in the final recognition rate under the SNR 

environment set in the experiment, and the effect was most significant in the SNR environments of 

4dB and 10dB. The confusion matrix of the CNN_ResNet model under different SNR environments 

is shown in Figure 10. 
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(d)SNR=14dB                     (e)SNR=20dB 

Figure 10: The confusion matrix of CNN_ResNet model in different SNR environments 

4. Conclusion 

This experiment proposes a neural network model based on CNN, ResNet and SE module to 

address the problem of automatic modulation recognition being unable to achieve high recognition 

rates while maintaining a certain training speed in complex environments. This experiment 

established a total of three models, all of which were trained on the DeepSig RadioML 2018.01A 

dataset. Through comparative experiments, it was found that the CNN_ResNet model outperformed 

the other two models in terms of performance. This model can even achieve an accuracy of over 92% 

in an SNR=10dB environment and maintain an accuracy of around 60% in an SNR=0dB 

environment. However, the improvement in accuracy of the model has decreased in both high and 

low SNR environments. In future research, the model can be further optimized to adapt to more 

complex SNR environments. 

References 

[1] Wu Changcheng, Sun Xiaochuan, Yu Jike, etc Lightweight modulation signal recognition method based on e

nhanced multi-scale feature fusion [J/OL]. Telecommunications Technology, 1-10 [2020-03-24] https://doi.or

g/10.20079/j.issn.1001-893x.240613002. 

[2] Gong An, Zhang Guilin, Mou Weiqing, etc Automatic modulation recognition method based on multi-layer w

avelet decomposition convolutional neural network [J/OL]. Radio Communication Technology, 1-10 [2020-03

-24] http://kns.cnki.net/kcms/detail/13.1099.TN.20241125.1432.004.html. 

[3] Zhou Shunyong, Lu Huan, Hu Qin, etc Automatic Modulation Recognition Based on SVD and Hybrid Neura

l Network Model [J]. Electronic Measurement Technology, 2024, 47 (21): 111-121. DOI: 10.19651/j.cnki-em

t.2416437 

[4] Ma Wenxuan, Cai Zhuoran, Wang Chuan, etc Edge Device Modulation Recognition Method Based on Light

weight Hybrid Neural Network [J]. Information Adversarial Technology, 2024, 3 (06): 83-94 

[5] Zhou Shunyong, Lu Huan, Hu Qin, etc Automatic Modulation Recognition Based on SVD and Hybrid Neura

l Network Model [J]. Electronic Measurement Technology, 2024, 47 (21): 111-121. DOI: 10.19651/j.cnki-em

t.2416437 

[6] Shen Danyang, Mai Wen Automatic modulation recognition of communication signals based on ResNet Tran

sformer [J/OL]. Computer Engineering, 1-12 [2020-03-24] https://doi.org/10.19678/j.issn.1000-3428.0069677. 

[7] Goodfellow, I., Bengio, Y., Courville, A.·Deep learning (Vol. 1)·Cambridge:MIT press,2016 

[8] Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, L., Wang, G. and C

ai, J., 2015. Recent advances in convolutional neural networks. arXiv preprint arXiv:1512.07108. 

[9] He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep residual learning for image recognition. In Proceedings 

of the IEEE conference on computer vision and pattern recognition (pp. 770-778). 

[10] Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision

 and Pattern Recognition. Salt Lake City, UT, USA: IEEE, 2018: 7132-7141.  

[11] O’Shea T J, Roy T, Clancy T C. Over-the-Air Deep Learning Based Radio Signal Classification[J]. IEEE Jo

urnal of Selected Topics in Signal Processing, 2018, 12(1): 168-179. 

Proceedings of  CONF-SEML 2025 Symposium: Machine Learning Theory and Applications 
DOI:  10.54254/2755-2721/160/2025.TJ23537 

15 


