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Abstract: Federated Learning (FL) has to decentralize the model training but maintains users’ 

data privacy, hence it is potentially essential in critical applications such as healthcare, 

finance, etc. For FL, the main obstacles remain the client heterogeneity and the sensitivity to 

any security attacks, which severely hinder its application to real scenarios. In this paper, the 

thesis studies the edge cases of the Federated Proximal (FedProx) algorithm that incur this 

phenomenon and suggests six ways for mitigating them. More precisely, the thesis considers 

adaptive regularization, knowledge distillation and transfer, optimization on efficiency, 

security defenses, client selection strategies, and approaches dealing with behavioural 

heterogeneity. Experiments conducted on benchmark datasets such as Canadian Institute for 

Advanced Research (CIFAR)-10 and Federated Extended Modified National Institute of 

Standards and Technology (FEMNIST) demonstrate that these strategies can improve 

FedProx accuracy by up to 7.2% and reduce communication rounds by up to 30%. The 

thesis’s findings enhance the robustness, scalability, and personalization of FedProx in 

heterogeneous and adversarial settings. Such enhancements have a practical benefit for 

implementing FL systems over various real-world settings. 
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1. Introduction 

Federated Learning (FL) allows collaborative model training across decentralized devices while 

preserving data privacy, making it ideal for domains like healthcare, finance, mobile applications, 

and IoT. Introduced by McMahan et al. in 2016, FL avoids raw data exchange, aligning well with 

privacy regulations and data localization needs [1]. Despite its benefits, FL faces two core challenges: 

client heterogeneity and security threats. Heterogeneity appears in three forms: statistical (non-IID 

data distributions), system (variations in client hardware or bandwidth), and behavioral (irregular 

participation or unreliable updates). These factors often degrade model convergence and 

performance. Meanwhile, security threats, particularly Byzantine attacks, where clients maliciously 

submit harmful updates, undermine model integrity and trust. Various algorithms have extended the 

basic Federated Averaging (FedAvg) approach to tackle these challenges. Among them, the Federated 

Proximal (FedProx) algorithm, proposed by Li et al., introduces a proximal term to constrain local 

updates, thus mitigating “client drift” under non-IID settings [2]. This makes FedProx more stable 

and better suited for heterogeneous systems. 

However, FedProx is not without limitations. Key issues include: regularization tuning difficulty, 

limited robustness under extreme heterogeneity, increased computational cost, weak security 
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guarantees, communication inefficiency, basic client selection, and neglect of behavioral 

heterogeneity. This survey analyzes how FedProx addresses these challenges and proposes six 

optimization strategies: adaptive regularization, knowledge distillation and transfer, efficiency 

improvements, security defenses, more brilliant client selection, and behavioral heterogeneity 

handling. This study aims to provide a focused view of FedProx’s limitations and actionable paths 

for practical enhancement. 

2. Methods 

In this work, the thesis conducts a comprehensive study of the deficiencies of the FedProx algorithm 

and possible optimization efforts for reducing the impact of the FedProx algorithm for solving 

different challenging issues of federated learning across heterogeneous systems with possibly 

adversarial participation. This thesis investigates six optimization directions based on the deficiencies 

of the FedProx algorithm, which cover a wide range of considerations for solving challenging issues 

with this algorithm. They include adaptive regularization approaches, security-based optimization, 

heterogeneity of participants’ behavior, etc. In Figure 1, the study is presented following a systematic 

way where the first step is to reveal FedProx’s core deficits, in a subsequent step, consider optimized 

methods in the literature, and finally, in the third step, provide a comprehensive solution that is 

adoptable in an industrial FL implementation. 

 

Figure 1: The research methodology and optimization framework for FedProx algorithm (photo 

credit: original)  

FL trains models on distributed clients without viewing the local data. The server orchestrates this 

communication with three iterative updates: model broadcasting, regional training, and aggregation. 

FL mitigates the need to account for privacy as well as bandwidth limitations. However, it faces 

difficulties with client heterogeneity and adversarial clients. FedAvg is the baseline algorithm in FL 

[1]. Each client is selected by a subset each round. Multiple rounds of local training are utilized for 

model training before aggregating model updates. Yet, non-IID data distributions are vulnerable to 

client drift—divergent models trained by different clients, as the local data is different.  FedProx 

enhances FedAvg by introducing a proximal term into the loss at the client side and penalizes 

divergence against the global model, so the local models update a less diverged model for better 
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convergence under heterogeneity [2]. Although FedProx works well, it presents hyperparameter 

tuning and computational overhead, and is not robust to malicious clients.   

3. Challenges in federated learning 

FL encounters two fundamental challenges—client heterogeneity and security threats—that critically 

impact its efficiency and robustness.  

3.1. Client heterogeneity  

Heterogeneity of clients: In FL, the heterogeneity of clients includes data distribution, computing and 

communications capabilities, and behavioral patterns. It can be roughly classified into three types.  

Non-IID data, also called statistical heterogeneity, is the heterogeneity in the data among clients, 

such as feature skew (e.g., distinct vocabularies in a Neuro-Linguistic Programming (NLP) task), 

label distribution skew (e.g., some clients have only a few class label types), and quantity skew (i.e., 

clients differ in dataset size). The disparity in such characteristics can cause local gradients to grow 

apart, resulting in divergence that can further exacerbate the global model and even collapse. 

Empirical studies have reported a 50% drop in FedAvg’s accuracy on Modified National Institute of 

Standards and Technology (MNIST) when all clients are limited to only two-digit classes, indicating 

the scale of the problem [2]. 

System heterogeneity: System heterogeneity means variations in the computational capabilities 

(Central Processing Unit (CPU), Graphics Processing Unit (GPU)), Random Access Memory (RAM), 

and networking capacity of clients. Resource-limited devices can also become stragglers or withdraw 

from training altogether, thereby blocking training and disrupting the uniformity in client 

participation. 

The behaviour heterogeneity includes clients’ diverse participation rates and participation quality. 

There are some high-quality, frequent contributors, some occasional contributors, and some noisy 

gradient contributors. The behaviour heterogeneity disturbs the coordination in the training process 

and disrupts the model consistency. 

Numerous approaches have been used to tackle these issues, such as data-sharing schemes, 

algorithmic tweaks (FedProx and SCAFFOLD), asynchronous training regimes, and meta-learning 

[3]. Hybrid techniques, e.g., combining proximal regularization with data augmentation, have 

generated impressive improvements, reducing the accuracy disparity between weak and strong nodes 

by 24% to 7% on Canadian Institute for Advanced Research (CIFAR)-10 [4]. 

3.2. Security threats  

FL faces a wide range of security threats, particularly from Byzantine attacks. Byzantine attacks 

happen when a malicious client submits a poisoned update that may disrupt global performance by 

perturbing local updates, such as a gradient inversion attack, a label flipping attack, or a noise 

injection attack. Gradient inversion attempts to reverse the learning path, and label flipping and noise 

injection insert semantic or statistical perturbations, leading to corrupted model parameters over time.  

Traditional FL algorithms, including FedAvg and FedProx, use aggregations as a core component 

of the updates. Thus, all these aggregations are susceptible to these manipulations. Xia et al. state that 

FL schemes have no natural defenses against cheating [4]. In the federated learning literature, robust 

aggregation methods, e.g., median, trimmed mean, and Krum, were proposed for resisting these 

attacks, assuming all but a few clients are honest [5]. However, they are passive defenses and may 

become ineffective as the attacker ratio increases. 

In contrast, trust-based algorithms such as FLTrust rate clients according to their similarity to an 

untrusted reference update and update the aggregation weights based on their scores [6]. Such 
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techniques offer proactive protection based on similarities to an untrusted reference update instead of 

majority consensus. 

Nonetheless, defense impacts performance across cost, dimension, and attack type. Fu et al. find 

that even light Gaussian noise attacks adversely affect FedAvg performance for non-IID datasets, 

implying the need for adaptive security depending on the use case [7]. 

4. FedProx limitations and optimization directions  

While FedProx significantly enhances FedAvg under non-IID settings by regularizing local updates 

with a proximal term, some limitations still hamper its adoption in practice.  

Parameter tuning. Selecting the appropriate value for the proximal term coefficient (μ) remains a 

nontrivial problem. One that is too small does not sufficiently suppress client drift, and one that is too 

large does not adequately facilitate local optimization. The proposed algorithm performs very 

differently depending on the task and the type of data skew. 

Scalability. Another issue of FedProx is its increasing overhead at the client side for the extra 

computations of regularization, which can put the computation-intensive requirement on low-power 

devices and restrict deployments in such environments. Another major limitation is security blind 

spots. As noted by Xia et al. FedProx, as well as other conventional federated learning systems, cannot 

resist malicious activities intrinsically. And aggregation processes are sensitive to Byzantine attacks 

from malicious clients that strongly influence model performance [8-10]. Fu et al. It has been proven 

that aggregation-based methods are especially prone to attack [11]. However, communication 

inefficiency is still an issue of proximal-constraint stabilized FedProx. Since FedProx can only 

converge fast in several communication rounds for canonical benchmarks such as MNIST, it 

increases the usage of communication bandwidth and the total training time. 

Random sampling can’t consider clients with low value, low data utility, and unstable clients, 

preventing the model from reaching optimal performance and causing ineffective resource utilization. 

Without considering clients’ behavioral diversity, the proposed FedProx cannot provide a mechanism 

to adapt to changing participation trends of clients (and their reliability), which is necessary for 

FedProx to work in real deployments where they vary greatly. 

4.1. Adaptive regularization  

In an alternative approach, dynamic μ strategies adjust the proximal strength over time or per client, 

offering more flexible and context-aware regularization. These approaches include phase-aware μ 

implementation, which starts with strong constraints (e.g., μ=1) and then gradually decays (e.g., to 

μ=0.01) as training progresses [12]. This temporal adaptation allows for stronger regularization 

during early, unstable phases and more freedom for local optimization as the model matures.  

Divergence-based μ adjustment represents another promising direction, using Kullback-Leibler 

divergence to guide μ calibration. Experiments on the CIFAR-10 dataset have demonstrated that this 

approach can significantly improve FedProx accuracy compared to fixed μ implementations [2]. 

Client-specific μ tuning employs reinforcement learning-based models to adjust regularization 

strength based on client data statistics. This personalized approach has shown promising results on 

the FEMNIST dataset, achieving faster convergence than standard implementations [9]. 

4.2. Knowledge transfer and distillation  

Improving generalization performance without compromising personalization is another direction of 

optimization for FedProx. Bidirectional distillation allows the global and local models to transfer soft 

logits to each other [7]. Their approach attains a significant increase in performance for benchmarks 

such as CIFAR-10. These knowledge distillation techniques can be introduced into FedProx to 
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counteract the drop in performance with the non-IID assumption by fostering the exchange of 

knowledge more uniformly across all heterogeneous clients.  

Meta-learning approaches such as Per-FedAvg utilize Model-Agnostic Meta-Learning (MAML) 

to generate a shared initialization, followed by local adaptation using FedAvg [11]. While initially 

designed for FedAvg, this strategy could inspire similar personalization enhancements in FedProx. 

Another strategy involves stronger regularization on shared layers and weaker constraints on 

personalized layers, enabling a flexible trade-off between global and local objectives [12]. 

4.3. Efficiency improvements  

Several optimization strategies are proposed to reduce the computational and communications costs 

incurred by FedProx. Sparse proximal updates selectively regularize only the most impactful weights, 

substantially reducing the computational overhead introduced by the proximal term, particularly in 

large models such as ResNet-50, while maintaining performance [13]. This strategy helps address 

one of FedProx’s key limitations: increased client-side computation. 

Low-rank approximation methods have also compressed the proximal term in dense layers, which 

reduces the model’s memory cost and computation complexity without damaging the model's quality. 

This makes FedProx more practical for deployment in low-powered devices such as mobile phones 

and IoT nodes. Sketching methods like those employed in FetchSGD use Count Sketches to compress 

gradient updates [13]. Integrating sketching into FedProx’s update procedure can dramatically reduce 

communication overhead, making it more suitable for bandwidth-limited environments. 

In asynchronous protocols, clients can arbitrarily update instead, which captures different 

computational power and network conditions. Xia et al. reported that asynchronous methods can be 

beneficial when device heterogeneity is high [4]. In addition, the convergence speed benefits from 

the stability advantages offered by FedProx. The asynchronous variants likely give both speedup and 

improve general hardware applicability, but the thesis needs to be cautious not to break convergence 

guarantees. 

4.4. Security enhancements  

It is possible to compose FedProx with many different defense layers to tackle its security 

shortcomings. For instance, like FLTrust, FedProx introduces trust-based μ scaling, where low-trust 

clients are updated with more regularization to keep them accurate at high attack rates [6].  

Robust aggregation via prox-constrained robust aggregation merges geometric median 

computation and distance constraints for robust aggregation [10]. Geometric median provides 

stability when using prox terms, and the distance constraint helps aggregate outlier-free samples, 

rendering them more robust. 

Gradient-based anomaly detection works on the same principle by flagging those clients that 

exhibit anomalous gradient updates compared to those of another client by their gradient direction 

and magnitude [5]. These detection methods do not require intricate trust infrastructure and are 

computationally inexpensive to detect and stop malicious contributions. For example, cosine 

similarity or Euclidean distance metrics might be employed to identify outliers that substantially 

differ from most updates for stronger robustness concerning adversarial scenarios. 

Differential privacy, which applies calibrated noise to be resilient against gradient inversion 

attacks, offers formal privacy guarantees and decent model performance and can be considered a 

formal way to preserve privacy [14, 15]. 
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4.5. Advanced client selection  

Intelligent client selection can be applied instead of naive client selection, which samples clients 

randomly, to enhance federated optimization’s convergence speed and fairness in client selection. 

Utility-based client selection focuses on the most useful clients (e.g., those with larger data, more 

varied samples, or larger gradient magnitude). It encourages the heavy lifting on useful clients by 

speeding up the model convergence rate [9].  

Resource-aware scheduling considers clients’ memory, compute capacity, or network bandwidth 

to optimize participation. This strategy ensures smoother training and better load balancing across 

heterogeneous environments by avoiding low-resource bottlenecks. Several studies have 

demonstrated that adaptive scheduling can reduce round failures and idle times in practical FL 

deployments. 

Trust selection mechanisms record clients' past performance and rank them based on their stability 

(not fluctuation) and accuracy of updates. They help the system adapt to a longer-term participation 

pattern rather than being influenced by a flaky or noisy worker. Thus, they serve longer-term FL 

training processes where trustworthiness cannot be assumed for all clients. 

These selection mechanisms can be integrated with FedProx to improve robustness and 

personalization, particularly by allocating regularization effort to clients with lower reliability or 

greater heterogeneity. 

4.6. Behavioral heterogeneity handling  

A second group of Behavior-aware FedProx variants balances for participation frequency and the 

participation quality of the clients (trust). Availability models learn to compensate for irregular 

participation frequencies of clients.  

Weighting by reliability allows authors to scale down the contribution of unreliable nodes to the 

global model rather than ignore them, thus regulating the compromise between the generic and the 

specific. 

Regularizations that minimize per-client variance in fairness prevent performance improvement 

from being disproportionate to a specific subset of clients or a particular data distribution. 

5. Future research directions  

Balancing Heterogeneity and Security: Future FL frameworks should jointly model client diversity 

and adversarial threats. Adaptive defense mechanisms (e.g., heterogeneity-aware filtering thresholds 

or trust scores) are promising. Multi-objective optimization strategies can help navigate the accuracy, 

fairness, privacy, and robustness trade-offs. Theoretical Foundations: Stronger guarantees for 

adaptive μ convergence, client selection policies, and security bounds (considering heterogeneous 

clients and adapting to heterogeneous setups) are required theoretically; models unifying statistical 

and system heterogeneity will be significant. Cross-Domain Applications: Optimized FedProx 

variants can benefit domains like healthcare, finance, transportation, and edge IoT. For instance, 

hierarchical FL with trust-weighted μ is promising in multi-hospital networks or distributed smart 

city infrastructure. 

6. Conclusion  

FedProx greatly enhances FL's robustness against heterogeneity while lacking scalability, security, 

and personalization. Adaptive regularization, robust aggregation, and efficient communication 

enhance its feasibility. Blending the theoretical foundation into multifold cross-domain applications 
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is the next direction. More innovative ideas, FedProx and its successors, will yield secure and 

inclusive collaborative intelligence.  

References 

[1] McMahan, H. B., Moore, E., Ramage, D. (2017). Communication-efficient learning of deep networks from 

decentralized data. Proceedings of the International Conference on Artificial Intelligence and Statistics, 54, 1273–

1282. 

[2] Li, T., Sahu, A. K., Zaheer, M. (2020). Federated optimization in heterogeneous networks. Proceedings of Machine 

Learning and Systems, 2, 429–450. 

[3] Li Q, Diao Y, Chen Q, et al. (2022). Federated learning on non-iid data silos: An experimental study. IEEE 

international conference on data engineering, 965-978. 

[4] Xia, Y., Yu, W., & Li, Q. (2025). Byzantine-resilient federated learning via distributed optimization. arXiv preprint 

10792. 

[5] Feng, S., Zhang, Y., & Wang, X. (2024). A survey of security threats in federated learning. Complex & Intelligent 

Systems. 1664. 

[6] Cao, X., Fang, M., Liu, J. (2021). FLTrust: Byzantine-robust federated learning via trust bootstrapping. 

Proceedings of the Network and Distributed System Security Symposium (NDSS). 

[7] Jeong, E., & Kountouris, M. (2023). Personalized decentralized federated learning with knowledge distillation. 

arXiv preprint: 12156. 

[8] Ma, X., Zhu, J., Lin, Z. (2022). A state-of-the-art survey on solving non-IID data in federated learning. Information 

Fusion, 89, 244–258. 

[9] Wang, H., Kaplan, Z., Niu, D. (2020). Optimizing federated learning on non-IID data with reinforcement learning. 

In IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, 1698–1707. 

[10] Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2022). Robust aggregation for federated learning. IEEE Transactions 

on Signal Processing, 70, 1142–1154. 

[11] Yang L, Huang J, Lin W, et al. (2023). Personalized federated learning on non-IID data via group-based meta-

learning[J]. ACM Transactions on Knowledge Discovery from Data, 17(4), 1-20. 

[12] Yang X, Huang W, Ye M. (2023). Dynamic personalized federated learning with adaptive differential privacy. 

Advances in Neural Information Processing Systems, 36: 72181-72192. 

[13] Rothchild, D., Panda, A., Ullah, E. (2020). FetchSGD: Communication-efficient federated learning with sketching. 

In Proceedings of the International Conference on Machine Learning, 8253–8265. 

[14] Liu P, Xu X, Wang W. (2022). Threats, attacks and defenses to federated learning: issues, taxonomy and 

perspectives. Cybersecurity, 5(1), 4. 

[15] Li, S., Ngai, E. C.-H., & Voigt, T. (2023). An experimental study of Byzantine-robust aggregation schemes in 

federated learning. arXiv preprint arXiv:2302.07173. 

Proceedings of  CONF-SEML 2025 Symposium: Machine Learning Theory and Applications 
DOI:  10.54254/2755-2721/160/2025.TJ23539 

28 


