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Abstract: Steel truss structures are prone to reliability degradation due to fatigue, corrosion, 

and other factors during long-term service. Traditional assessment methods suffer from high 

parameter uncertainty and costly maintenance. To improve prediction accuracy, this study 

proposes a Bayesian updating-based framework for truss reliability prediction, integrating 

ABAQUS finite element modeling with field measurements to establish a dynamic 

parameter updating model. Using Zhangyan Bridge as a case study, Bayesian theory is 

applied to fuse prior distributions with displacement monitoring data, quantifying the 

posterior distribution changes in member stiffness parameters under different loading 

modes. Results indicate that under vertical loads, the posterior standard deviation of 

member stiffness decreases significantly, effectively reducing parameter uncertainty. 

Analyses of horizontal and oblique loads further reveal the influence of load direction on 

reliability sensitivity. The findings provide a low-cost, practical reliability assessment 

method for bridge maintenance and propose future research directions, including automated 

algorithms and nonlinear model optimization, demonstrating substantial engineering value. 

Keywords: Bayesian methods, truss structures, reliability prediction, parameter updating, 

loading modes 

1. Introduction 

As a primary load-bearing form in bridges, buildings, and industrial facilities, steel structures 

undergo continuous deterioration due to fatigue, corrosion, and overload during long-term service. 

With increasing traffic demands, truss structures—characterized by stress concentration at nodes, 

sensitivity to dynamic loads, and challenges in detecting hidden damage—face heightened risks of 

failure. Maintenance costs for aging structures account for over 40% of total infrastructure 

investments in developed countries [1], underscoring the urgency for accurate reliability prediction 

to enhance safety and reduce rehabilitation expenses. 

With the continuous advancement of theory and technology, numerous scholars worldwide have 

made innovative progress in applying Bayesian updating to study the reliability of bridge structures 

with diverse types and materials. For instance, Gong et al[2]. achieved more accurate reliability 

assessments for ancient stone arch bridges, exemplified by the Zhaozhou Bridge, using Bayesian 

updating methods. Ma introduced a Bayesian dynamic linear model to investigate the reliability of 

existing small- and medium-span bridges [3]. Xiao et al. employed the subset simulation-based 
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BUS method to rapidly and accurately update parameters in chloride-induced durability models [4]. 

Internationally, Mohamad Salaheddine and Kaveh Arjomandi proposed a reliability-based 

framework for the evaluation and optimized maintenance of steel bridges [5]. R. Wang, L. Ma, C. 

Yan, and J. Mathew developed a novel structural reliability prediction method for steel bridges 

using dynamic object-oriented Bayesian networks (DOOBNs) [6]. Tran, T.-B., Bastidas-Arteaga, E., 

and Aoues (2020) presented a dynamic Bayesian network approach to update the reliability of 

deteriorating timber structures based on inspection data [7]. Yilmaz, M.F., Anghileri, M., Capacci, 

L., and Biondini, F. (2022) proposed a reliability assessment framework for reinforced concrete 

bridges exposed to corrosion, integrating lifecycle probabilistic methods with Bayesian updating to 

incorporate structural health monitoring data into simulation-based evaluations of deteriorating 

bridges [8]. Recognizing the critical relationship between modal parameters and reliability, Wang 

and Lin et al. applied Bayesian model updating techniques to identify modal parameters, thereby 

indirectly enabling structural reliability analysis [9][10]. 

Despite progress, Bayesian applications in truss reliability remain underexplored.This study 

establishes a Bayesian updating framework combined with ABAQUS finite element modeling to 

predict truss reliability under diverse loading conditions. The proposed methodology offers 

theoretical guidance for lifecycle reliability assessment of truss structures. 

2.  Bayesian theory 

2.1. Bayesian framework 

Bayesian theory is a statistical inference paradigm based on probability. Its core is to combine prior 

knowledge with observation data through dynamic updating to form quantitative cognition of 

unknown parameters or assumptions [11]. Different from the frequency school, Bayesian method 

regards parameters as random variables and emphasizes the rationality of subjective probability and 

iterative learning ability. 

Bayesian update algorithm is a statistical inference method based on Bayesian theorem, which can 

continuously update the model parameters by calculating the posterior distribution combined with 

prior information and observation data. In truss reliability prediction, Bayesian updating can adjust 

the parameters in the empirical model according to the measured data and historical information, and 

greatly improve the accuracy. The core formula is: 

 P(θ|D) =
P(D|θ)P(θ)

P(D)
=

P(D|θ)P(θ)

∫P(D|θ)P(θ)dθ
                            (1) 

where: 

P(θ|D): Posterior probability reflecting updated parameter uncertainty. 

P(D|θ): Likelihood function describing data generation under θ. 

P(θ): Prior probability encoding initial parameter knowledge. 

P(D): Marginal likelihood ensuring normalization. 

The specific flow of Bayesian theory is as follows (Figure 1): 

Proceedings of  CONF-FMCE 2025 Symposium: Semantic  Communication for  Media Compression and Transmission 
DOI:  10.54254/2755-2721/162/2025.GL23576 

48 



 

 

 

Figure 1: Bayesian theory flow chart 

2.2. Prior distribution setup 

The prior probability distribution can reflect the understanding of model parameters without new 

observation data. Taking a truss structure as an example, it is assumed that the elastic modulus of its 

upper and lower chords and web members obey normal distribution: 

 EA~N(μEA, σEA
2 )                              (2) 

The mean value is taken from the material manual (e.g. the typical value of steel is 2.0 × 105Mpa), 

and the standard deviation reflects the fluctuation of the production batch (e.g. zone 5%) 

For the failure probability θ of key members (such as compression webs), in the absence of 

specific historical data, we assume that the failure probability θ follows a uniform distribution 

θ~U(0.0.05), covering a reasonable range of failure probability. 

2.3. Likelihood function construction 

The establishment of likelihood function is the key link of Bayesian renewal theory, which needs to 

be based on truss mechanics model and observation data. In truss reliability analysis, the likelihood 

function based on node displacement observation data needs to quantify the difference between the 

predicted value of the theoretical model and the measured value, and its core is to describe the joint 

impact of measurement error and parameter uncertainty on the data through the probability model 

[12]. 

For the truss node displacement data, the likelihood function predicts the displacement value 

through the theoretical mechanical model, and assumes that the difference between the measured 

value and the theoretical value is independent and obeys the normal distribution. The likelihood 

function can be expressed as: 
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 P(D|θ) = ∏
1

√2πσi
2

n
i=1 exp(−

(di
obs−di

model)2

2σi
2 )                   (3) 

Where, di
obsis the measured data and di

modelis the predicted value of the model. 

3.  Case study 

3.1. Project overview 

In this paper, Zhangyan bridge is selected as the specific research engineering background. Zhangyan 

bridge is located in Fengxiang village, Qinnan Town, Yandu District, Yancheng City. The truss 

bridge has a span of 5×20+81.96+5×20 meters, a total width of 7.0m, two-way two lane, and the main 

bridge adopts through steel truss beam structure (Figure. 2). 

 

Figure 2: Structural drawing of swallow bridge 

In order to simplify the calculation, the most representative span is selected for this study. Because 

it is a symmetrical structure, and the middle span has the largest bending moment and larger 

displacement, it is more prone to fatigue damage. It has been several years since the bridge was 

initially built, and the predicted value of the model is a priori number. There is a certain error between 

it and the measured value today, because the tensile and compressive stiffness EA of the bridge will 

decrease year by year during the service period, especially in the middle span. Therefore, the middle 

span with the greatest risk is selected for this study. The model diagram is shown in Figure 3: 

 

Figure 3: Simplified model diagram 

The model parameters are determined by the specific data of Zhangyan Bridge: 

(1) Span: 6m truss height: 4.5m 

(2) Top chord EA1, web member bottom chord EA2, bottom chord EA3 (EA1=EA3) 

(3) Apply three concentrated loads p=400kn at the apex 3, 5 and 7 
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(4) The measured vertical displacement of 4 points is 17.4mm, the vertical displacement of 6 

points is 13.9mm, and the lateral displacement of 3 points is 1.47mm 

(5) EA1 obeys normal n (800000KN, 80000KN); EA2 obeys uniform U (250000KN, 320000KN) 

as a priori and updates EA1 and EA3. (EA1 error conforms to the normal distribution with standard 

deviation of 2.0mm, and EA2 error conforms to the normal distribution with standard deviation of 

0.2mm) 

3.2. Displacement analysis 

The virtual work principle is based on the law of conservation of energy and is widely used in the 

displacement analysis of truss structures. When there is no external force acting on the target node, 

the displacement calculation problem can be solved by applying virtual force. Virtual work equation: 

1 ⋅ 𝛥 = ∫ 𝑢 ⋅ 𝑑𝐿 and its application in integral truss:1 ⋅ 𝛥 = ∑
𝑛𝑁𝐿

𝐸𝐴
 it provides a theoretical basis for 

this. 

Taking three vertical 400kN concentrated loads on the top as an example, the specific 

displacement calculation formula is as follows: 

 𝛥4 =
2𝑃

𝐸𝐴1
+

10√10𝑃

𝐸𝐴2
+

𝑃

4𝐸𝐴3
                           (4) 

 𝛥6 =
𝑃

3𝐸𝐴1
+

5√10

2𝐸𝐴2
+

𝑃

2𝐸𝐴3
                            (5) 

 𝛥3 =
𝑃

𝐸𝐴1
+

3𝑃

2𝐸𝐴3
                               (6) 

The theoretical value of each node displacement can be calculated through the above formula, and 

the results are summarized in the following table 1: 

Table 1: Calculated and measured displacement of each node 

Node Displacement Type Predicted (mm) Measured (mm) Error (%) 

4 Vertical (U2) 15.4 17.4 13.0 

6 Vertical (U2) 11.5 13.9 20.9 

3 Horizontal (U1) 1.25 1.47 17.6 

3.3. Finite element validation 

ABAQUS is a set of powerful finite element software for engineering simulation. It has powerful 

modeling ability, can simulate a variety of material properties, and can consider the nonlinear 

characteristics of materials such as molding and fatigue. In conclusion, it can effectively simulate the 

structural displacement results. Therefore, ABAQUS software is used for static analysis in this study. 

Truss element is used in the simulation, and the EA values of chords and webs are taken as the 

mean value of the distribution. The results are as follows (Figure 4): 
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Figure 4: Displacements under vertical loads (a) horizontal (b) vertical 

4.  Reliability prediction under different loading modes 

4.1. Vertical load effects 

Vertical load is the main stress form of truss structure, which directly affects the internal force 

distribution of members, and then determines the sensitivity of EA parameters to structural response. 

By applying vertical loads with different distributions, the strain or displacement response data of 

members under actual working conditions can be simulated to provide observation values for 

Bayesian update. By applying vertical concentrated loads at different nodes, the strain or 

displacement response data of members under actual working conditions can be simulated to provide 

observation values for Bayesian update. 

If the prior distribution assumes a high EA value, but the load test shows that the large deformation 

Bayesian update will correct the EA posterior distribution to shift to low stiffness, reflecting the 

potential material degradation. 

When the vertical concentrated load is 400KN and is set at nodes 3, 5 and 7 respectively, the 

displacement values of nodes 3, 4 and 6 are monitored. If the prior upper chord EA1 and lower chord 

EA3 obey normal distribution (800000KN, 80000KN) (Figure 5), web member EA2 obeys uniform 

distribution (250000KN, 320000KN), the posterior update is that EA1 and EA3 obey normal 

distribution (795000KN, 80000KN), and EA2 obey normal distribution (260000KN, 6700KN) 

(Figure 5). It can be seen that through Bayesian updating, the standard deviation of EA1 (upper chord) 

and EA3 (lower chord) decreased from 800000KN to 795000KN (the decrease was not significant), 

the distribution range of EA2 (web member) was compressed from uniform distribution to normal 

distribution, and the uncertainty of EA2 was effectively controlled. Because the update effect of EA1 

and EA3 is not significant, change the load mode and continue to update. 
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Figure 5: Update effect under vertical load mode 

(a) Prior and posterior distribution of EA1&EA3 under vertical load mode 

(b) Prior and posterior distribution of EA2 under vertical load mode 

4.2. Horizontal load effects 

Change the vertical load to the horizontal load and continue to update the data. Both wind load and 

seismic force belong to lateral load, which may cause significant lateral displacement. Therefore, the 

setting of lateral load is also very important to predict the integrity and reliability of the structure. 

When 400KN transverse concentrated load is set at nodes 3 and 7 respectively, the transverse 

displacement of nodes 3 and 7 is monitored respectively. The prior distribution of EA value is 

consistent with that of vertical load. A posteriori update shows that EA1 and EA3 obey normal 

distribution (788000KN, 80000KN), and EA2 obey normal distribution (260000KN, 4700KN) 

(Figure. 6). It can be seen that through Bayesian updating, the average value of EA1 (upper chord) 

and EA3 (lower chord) decreased from 800000KN to 78000000KN, the distribution range of EA3 

(web member) was compressed from uniform distribution to normal distribution, and the uncertainty 

of key parameters was effectively controlled. 

 

Figure 6: Update effect diagram under horizontal load mode 

(c) Prior and posterior distributions of EA1&EA3 under horizontal load mode 

(d) Prior and posterior distribution of EA2 under horizontal load mode 

5. Conclusions 

Based on ABAQUS finite element simulation platform and Bayesian parameter updating theory, this 

study constructed the reliability evaluation model of bridge truss structure: 

The research confirms that Bayesian method can correct the cognitive deviation of member 

stiffness through limited monitoring data under different load types, reflecting its adaptability under 

different stress scenarios. It is worth noting that the web member (EA2) shows significant sensitivity 
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in the updating process, which provides a theoretical basis for the selection of priority parameters in 

engineering monitoring. In the future, the dynamic Bayesian network (DBN) is introduced to 

dynamically associate the time-series load data with the structural response to realize the real-time 

tracking of parameter degradation and quantitative characterization of damage accumulation; On the 

other hand, it breaks through the limitation of single mechanical monitoring, couples 

multi-dimensional information such as environmental temperature and humidity, material corrosion 

rate, and constructs hierarchical Bayesian model to improve the effect of parameter update and 

long-term prediction accuracy. 
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