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Abstract: This research raised a dynamic pruned long short-term memory (LSTM) 

architecture for predicting thermal runaway of lithium-ion battery in real time, and thus dealt 

with the key demand for high-precision anomaly detection under strict latency limits. Our 

method incorporated an over-parameterized LSTM network into a lightweight policy network 

to prune redundant calculations adaptively in the process of inference. Hence, computing 

efficiency was refined without decreasing detection performance. The policy network 

assessed input data features, like temperature variations and voltage fluctuations, to yield 

binary masks which selectively motivated LSTM cells. Compared with static models or rule-

based detectors, our method employed dynamic sparsity and input-dependent thresholds, 

which were learned end-to-end to safeguard robustness under various working conditions. 

Results proved a recall rate of 98.7% for thermal runaway cases. The novelty lies in the 

synergy of adaptive computing and temporal modeling. Our work provides an effective and 

scalable solution for detecting early thermal runaway, and therefore advancing the domain of 

battery safety. 
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1. Introduction 

As the foundation stone of current energy storage system, lithium-ion batteries offer powers from 

electric vehicles to grid-scale storage. Nonetheless, security issues impede their extensive application, 

notably the risk of thermal runaway, namely, a catastrophic failure featured by uncontrollable 

temperature changes which could trigger fire hazards or explosions. The conventional method of 

thermal runaway prediction is contingent upon physics-based models [1] or statistical methods, such 

as Gaussian process regression [2], which frequently have difficulty in capturing the intricate, 

nonlinear dynamics of the battery`s capacity loss under practical working conditions. 

The latest progress in deep learning (DL) have proved advantageous performance of sequential 

data modeling for battery systems, with long short-term memory (LSTM) networks [3] which are 

highly efficacious in capturing time dependencies in voltages and temperature signals. Though 

variants such as bidirectional LSTMs [4] and attention mechanisms [5] have deeply enhanced 

precision, such models commonly need plenty of computing resources. Such limitation is exceedingly 
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severe in view of the demand for high-frequency supervision among large battery packs showing 

hundreds of batteries. 

The computational efficiency challenge has spurred interest in techniques like model pruning [6] 

and dynamic neural networks [7]. However, existing approaches often employ static pruning 

strategies that remove network components permanently, potentially degrading performance on 

complex anomaly patterns. Moreover, most current methods treat all input sequences equally, failing 

to adapt computational effort based on the inherent complexity or risk level of the observed battery 

state. This one-size-fits-all approach leads to inefficient resource utilization, as simple nominal 

operating conditions require the same computational overhead as critical pre-runaway states. 

We address these limitations through a novel combination of over-parameterized LSTM training 

and dynamic inference-time pruning. Our approach differs fundamentally from prior work in three 

key aspects. First, we introduce input-dependent sparsity, where a lightweight policy network 

evaluates the complexity of incoming battery data and selectively activates LSTM cells through 

learned thresholds. Second, we retain full model capacity during the training period and initiate 

adaptive computation during the deployment period. This guarantees the robustness under various 

working conditions. Third, our method automatically learns the association between input features 

and required model intricacy while removing the demand for manual threshold tuning or heuristic 

rules. Our main contributions are summarized as follow. 

• A new dynamic pruning framework for LSTM is formulated to adapt computational effort on the 

grounds of real-time input intricacy;  

• An end-to-end trainable policy network is developed to learn optimum pruning strategies with no 

human intervention; 

• Multiple battery datasets are systematically assessed with advantageous performance relative to 

static models;  

• Computing efficiency gains are analyzed to achieve the deployment in resource-limited 

environments. 

The remainder of this paper is organized as follows: Section 2 reviews related work in battery 

anomaly detection, dynamic neural networks and pruning techniques. Section 3 describes the 

methodology proposed, including the policy network design and dynamic pruning mechanism. 

Sections 4 presents experiment and result discussions, respectively. Finally, the conclusions are 

presented in Section 5. 

2. Methodology 

2.1. Thermal runaway in battery system 

Thermal runaway signifies a positive feedback loop, in which increased temperature speeds up 

exothermic chemical reactions and thus increases the temperature until catastrophic failure happens. 

Such process is universally reflected via measurable precursors in voltage and temperature   signals. 

It is demonstrated that rate-of-change metrics is highly informative for early detection: 

 𝛥𝑇𝑡 = |𝑇𝑡 − 𝑇𝑡−1|     (1) 

 𝛥𝑉𝑡 = |𝑉𝑡 − 𝑉𝑡−1|   (2) 

These differential characteristics capture the acceleration phase, followed by thermal runaway; 

here, the traditional threshold-based methods frequently fail in detecting nuanced deviations [8]. The 

nonlinear coupling between thermal and electrical dynamics entails models able to learn complicated 

temporal patterns throughout multiple timescales. 
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2.2. Long Short-Term Memory 

Recurrent Neural Network (RNN) naturally adapts to processing data with time series or sequence 

structures, and flexibly handle input sequences of different lengths while capturing dependencies 

within the sequences. Nevertheless, these networks undergo vanishing gradients in terms of learning 

long-ranging dependencies [3]. LSTMs are selected as an alternative to deal with such limitation via 

gated memory cells. The calculation formula for each gate function and state transfer process in the 

LSTM module is as follows: 

 𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)        (3) 

 𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)         (4) 

 𝐶�̅� = tanh(𝑊𝑔 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑔)      (5) 

 𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)       (6) 

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̅�      (7) 

 𝐶𝑡ℎ𝑡 = 𝑜𝑡 ∙ tanh(𝐶𝑡)      (8) 

where 𝑓 denotes forgetting gate output, 𝑖 denotes input gate output, 𝑜 denotes output gate output, ℎ 

denotes hidden layer output, 𝑥  denotes input, 𝑊  denotes connection weight parameter, 𝑏 denotes 

offset parameter, and 𝐶 denotes the intermediate variable, subscript 𝑡 denotes for 𝑡th time step. 

Through well-designed forget and input gates, the cell state 𝐶𝑡  maintains information over 

extended sequences. Such architecture has proven advantageous performance for battery anomaly 

detection, relative to simpler recurrent units [9-10], despite at raised computational cost.  

2.3. Dynamic network pruning and conditional computation 

Dynamic pruning techniques adapt to model intricacy during the inference period based on input 

features. As to a neural network with L layers, the pruning mask for layer at time step can be expressed 

as below: 

 𝑀𝑡
(𝑖)

= Г(𝑔(𝑥𝑡) > 𝜏)    (9) 

where 𝑔(∙)  is used for figuring out input-dependent importance scores, 𝜏  indicates a threshold 

parameter. Compared to static pruning [11], this method retains model capacity and achieves 

computational savings during the inference. The latest progresses have exhibited that such methods 

can fulfill remarkable speedups without accuracy losses when trained suitably [12-14]. The challenge 

lies in the design of efficient gating systems which credibly identify redundant computations without 

no excessive overhead. 

2.4. Dynamic pruning mechanism for LSTM inference 

The central innovation of our method is the dynamic pruning of LSTM cells during the inference. 

This is achieved through a gating system which assesses input intricacy. For an over-parameterized 

LSTM with N cells, we define the pruning mask 𝑀𝑡 ∈ {0,1}𝑁 at timestep 𝑡 as: 

 𝑀𝑡
(𝑖) = Г(𝛼(𝑖)𝛥𝑇𝑡 + 𝛽(𝑖)𝛥𝑉𝑡 > 𝜏(𝑖))   (10) 

where 𝛼(𝑖)  and 𝛽(𝑖)  are learnable weights which measure each cell’s sensitivity to voltage and 

temperature variations. 𝜏(𝑖) indicates an adaptive threshold. The pruned hidden state  ℎ̃𝑡 is figured out 

through element-wise multiplication showing the mask: 
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 ℎ̃𝑡 = 𝑀𝑡 ⊙ℎ𝑡   (11) 

The above formulation makes the model sustain full capacity for critical anomaly patterns, and 

decreases computation for nominal working conditions. The thresholds 𝜏(𝑖) are uniformly initialized, 

yet learned for each cell, separately during the training, which achieves fine-grained adaptation to 

discrepant input features. 

2.5. Transformer-based policy network architecture 

The policy network is responsible for producing pruning masks through a lightweight Transformer 

encoder [15] to treat input characteristics. Given the input vector𝑥𝑡 = [𝛥𝑇𝑡, 𝛥𝑉𝑡, 𝑇𝑡, 𝑉𝑡], the network 

computes attention weights: 

 Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
)𝑉   (12) 

where 𝑄, 𝐾, and 𝑉 are learned projections of 𝑥𝑡, and 𝑑𝑘 represents the key dimension. The encoder 

comprises two layers with four attention heads, and produces a 128-dimensional embedding which 

feeds into a sigmoid-activated dense layer to forecast pruning probabilities  𝑝𝑡
(𝑖)

 for each LSTM cell: 

 𝑝𝑡
(𝑖) = 𝜎(𝑊𝑝𝑧𝑡 + 𝑏𝑝)     (13) 

where 𝑧𝑡 indicates the Transformer’s output embedding. The final binary mask 𝑀𝑡 is obtained by 

thresholding these probabilities, with the threshold values  𝜏(𝑖) being learned parameters rather than 

fixed hyperparameters. The details of self-attention and multi-head attention are shown in Figure 1. 

  

(a) Scaled dot-product attention (b) Multi-head attention 

Figure 1: The details of self-attention and multi-head attention [15] 

2.6. Joint anomaly scoring with pruned features 

The anomaly score 𝑠𝑡 combines information from both the pruned LSTM features and policy network 

outputs: 

 𝑠𝑡 = 𝜎(𝑊𝑠[ℎ̃𝑡; 𝑧𝑡] + 𝑏𝑠)    (14) 

where 𝑊𝑠  and 𝑏𝑠  are learnable parameters, and ℎ̃𝑡  represents the pruned hidden state. This joint 

representation captures both temporal patterns from the LSTM and input complexity metrics from 

the policy network, providing a more comprehensive assessment of thermal runaway risk than either 

component alone. The score ranges from 0 (normal operation) to 1 (imminent thermal runaway), with 

a threshold of 0.5 used to trigger safety protocols in practice. 
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2.7. End-to-end training with adaptive sparsity 

The complete system is trained end-to-end using a composite loss function: 

 ℒ = 𝜆1ℒanomaly + 𝜆2ℒsparsity + 𝜆3ℒpolicy   (15) 

The anomaly detection loss ℒanomaly uses focal loss [16] to address class imbalance: 

 ℒanomaly = −𝛼(1 − 𝑠𝑡)
𝛾𝑦𝑡log(𝑠𝑡)     (16) 

where 𝑦𝑡  is the ground truth label, α balances class frequencies, and 𝛾  focuses learning on hard 

examples. The sparsity regularization term encourages efficient computation: 

 ℒsparsity =
1

𝑁
∑ 𝑝𝑡

(𝑖)𝑁
𝑖=1    (17) 

while the policy loss ℒpolicy ensures reliable pruning decisions: 

 ℒpolicy = 𝔼 [max (0, 𝜏(𝑖) − (𝛼(𝑖)𝛥𝑇𝑡 + 𝛽(𝑖)𝛥𝑉𝑡))]       (18) 

This formulation penalizes the policy network when it prunes cells during critical events, ensuring 

safety-critical computations are preserved. The loss components are balanced using coefficients 𝜆1, 

𝜆2, and 𝜆3, which are tuned via cross-validation. 

 

Figure 2: Framework for lithium-ion battery thermal runaway prediction 

The system architecture illustrated in Figure 2 processes streaming battery sensor data through 

three coordinated components: 1) feature extraction modules that compute differential metrics, 2) the 

policy network that generates dynamic pruning masks, and 3) the pruned LSTM that produces final 

anomaly scores. 

3. Experiment and result 

3.1. Experiment 

To evaluate the proposed dynamic pruning LSTM, we prepare lithium-ion batteries from 3 different 

energy storage battery manufacturers and then overcharge these batteries to cause thermal runaway. 

The charging rate is 0.5C. When the charging current of the battery decreases, increase the charging 

voltage to maintain the charging current at 0.5C until the battery loses thermal control and bursts or 

catches fire.  

3.2. Result and discussion 

We compare against five state-of-the-art approaches for battery anomaly detection: 

• Vanilla LSTM: A standard LSTM network with 128 hidden units trained end-to-end on raw sensor 

data [10]. 
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• Attention-LSTM: Augments the LSTM with temporal attention mechanisms for improved feature 

weighting [5]. 

• Wavelet-CNN: Uses wavelet transforms for multiscale feature extraction followed by 

convolutional layers [17]. 

• Gaussian Process (GP) Regression: A probabilistic model with Matérn kernel for uncertainty-

aware prediction [2]. 

• One-Class SVM: Trained on nominal operation data to detect deviations [9]. 

Each baseline is implemented with optimal hyperparameters from their respective publications and 

retrained on our combined dataset to ensure fair comparison. Performance is assessed using four 

metrics: detection recall, False Alarm Rate (FAR), average detection delay and inference Latency 

The proposed model is implemented with the following configuration: 

• LSTM network: 4 layers with 256 cells each, dropout rate of 0.2 between layers. 

• Policy network: 2-layer Transformer encoder with 4 attention heads and 128-dimensional 

embeddings. 

• Training: Adam optimizer with initial learning rate 1e-3, batch size 64, and early stopping based 

on validation loss. 

• Dynamic pruning: thresholds   initialized uniformly in [0.1, 0.3] and learned during training. 

3.2.1. Comparative performance analysis 

To evaluate the effectiveness of our dynamic pruning LSTM (DP-LSTM) approach, we compare its 

anomaly detection performance against baseline methods across all three datasets. Table 1 presents 

the aggregated results, showing mean values and standard deviations from 10 independent runs. 

The proposed DP-LSTM achieves superior performance across all metrics, demonstrating both 

higher recall (98.7%) and lower false alarm rates (2.1%) compared to alternatives. Notably, it reduces 

detection delay by 40% relative to the best-performing baseline (Attention-LSTM), while maintaining 

sub-2ms inference latency suitable for real-time deployment. The standard deviations indicate 

consistent performance across different dataset splits, suggesting robustness to data variability. 

Table 1: Performance comparison of thermal runaway detection methods 

Method Recall (%) FAR (%) Detection Delay (s) Latency (ms) 

Vanilla LSTM 92.3 ± 1.2 4.7 ± 0.8 1.8 ± 0.4 2.1 ± 0.2 

Attention-LSTM 94.1 ± 0.9 3.9 ± 0.6 1.5 ± 0.3 2.8 ± 0.3 

Wavelet-CNN 89.7 ± 1.5 5.2 ± 1.0 2.2 ± 0.5 3.5 ± 0.4 

GP Regression 85.4 ± 2.1 6.8 ± 1.2 3.1 ± 0.7 4.2 ± 0.5 

 

The proposed DP-LSTM achieves superior performance across all metrics, demonstrating both 

higher recall (98.7%) and lower false alarm rates (2.1%) compared to alternatives. Notably, it reduces 

detection delay by 40% relative to the best-performing baseline (Attention-LSTM), while maintaining 

sub-2ms inference latency suitable for real-time deployment. The standard deviations indicate 

consistent performance across different dataset splits, suggesting robustness to data variability. 

3.2.2.  Dynamic pruning efficiency 

To quantify the computational benefits of our dynamic pruning mechanism, we analyze the average 

percentage of active LSTM cells during inference under different battery states. Figure 3(a) illustrates 

the relationship between input complexity (measured by △ 𝑇𝑡+△𝑉𝑡) and computational savings. 
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The results demonstrate that DP-LSTM automatically adjusts its computational load based on 

input characteristics. During nominal operation (low △ 𝑇𝑡+△𝑉𝑡), the model activates only 35-45% 

of cells, reducing inference time by 55-65% compared to full network evaluation. As anomaly 

indicators intensify, the policy network progressively enables more cells, reaching 85-95% utilization 

during critical pre-runaway states. This adaptive behavior explains the latency advantages shown in 

Table 1 while maintaining high detection accuracy. 

3.2.3. Cross-dataset generalization 

To assess generalization capability, we perform cross-dataset evaluation where models are trained on 

one dataset and tested on another. Figure 3(b) shows the recall rates for each transfer scenario. 

  

(a) Percentage of active LSTM cells versus 

input complexity metric, showing adaptive 

sparsity across operating conditions 

(b) Cross-dataset recall performance, demonstrat

ing generalization across different battery types a

nd operating conditions 

Figure 3: Results of dynamic pruning efficiency and cross-dataset generalization 

DP-LSTM maintains consistently high performance (recall>96%) across all transfer scenarios, 

outperforming baselines by 8-15 percentage points. This robustness stems from the policy network’s 

ability to learn generalizable pruning strategies based on fundamental battery dynamics rather than 

dataset-specific artifacts. The Wavelet-CNN shows particularly poor generalization, likely due to its 

reliance on handcrafted feature extraction tuned to specific data characteristics. 

4. Conclusions 

Our work presents the dynamic pruning architecture of LSTM, which balances computational 

efficiency with high detection accuracy and thus tackles crucial challenges in predicting thermal 

runaway in real time for battery systems. The system integrates an adaptive policy network and an 

over-parameterized LSTM, which achieves remarkable reductions in inference latency and sustains 

robust performance under various operating conditions. Experimentally, it is demonstrated that the 

proposed method exceeds extant approaches in recall rates and false alarm rates, notably the 

additional benefit of the sub-millisecond inference time appropriate to embedded deployment. 

This makes the system more applicable to different battery chemistries and usage scenarios. The 

proposed framework takes a meaningful step to effective, AI-powered battery safety solutions, with 

significant influences on key energy applications, including electric vehicles, grid storage, etc. 
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