
Proceedings	of	CONF-SEML	2025	Symposium:	Machine	Learning	Theory	and	Applications
DOI:	10.54254/2755-2721/2025.TJ23595

©	2025	The	Authors.	This	is	an	open	access	article	distributed	under	the	terms	of	the	Creative	Commons	Attribution	License	4.0
(https://creativecommons.org/licenses/by/4.0/).

210

 

 

Research on Transformer Models for End-to-End Control in 
Autonomous Driving 

Haitao Zhao 

School of Electrical Engineering and Computer Science, The University of Queensland, Brisbane, 

Australia 

haitao.zhao@student.uq.edu.au 

Abstract: This study addresses the challenge of trajectory tracking control in autonomous 

vehicles. Traditional hierarchical control methods often require manual parameter tuning and 

struggle to adapt to complex, multi-modal environments. To overcome these limitations, this 

paper proposes a Transformer-based end-to-end control model for autonomous driving. The 

model leverages self-attention mechanisms to dynamically fuse multi-modal inputs and 

capture long-term temporal dependencies. It consists of three main components: input 

encoding, multi-modal feature fusion, and control signal decoding. This paper evaluates the 

proposed model using datasets collected from the CARLA simulator and trains it with a 

hybrid training strategy training strategy. Experimental results show that this paper's 

approach outperforms the benchmark CNN-LSTM and PilotNet models, achieving 

performance improvements of 44% in control accuracy (MSE) and 63.5% in driving safety. 

Additionally, the proposed model demonstrates superior performance in control accuracy, 

driving safety, real-time response, robustness, and interpretability. Further analysis shows 

that incorporating multi-frame temporal inputs, an 8-head attention mechanism, and a cross-

attention fusion strategy enhances model performance, highlighting its strong potential for 

real-world applications.  

Keywords: Autonomous Driving, Transformer, End-to-End Model, Multi-Modal Fusion, 

Self-Attention Mechanism. 

1. Introduction 

Trajectory tracking control plays a vital role in autonomous driving, aiming to generate smooth and 

accurate control commands that enable vehicles to follow predefined paths or trajectories safely and 

reliably [1]. Existing control methods for autonomous vehicles can generally be categorized into two 

approaches: traditional hierarchical control strategies and emerging end-to-end learning-based 

methods. 

Traditional methods typically adopt a two-loop control framework that decouples position and 

velocity control. Path tracking is often achieved through the coordinated optimization of longitudinal 

and lateral control [2]. To achieve high-precision tracking, it is essential to match discrete path points 

in real time and design control algorithms based on vehicle kinematic or dynamic models. Significant 

progress has been made in this area, including sliding mode control [3, 4], Lyapunov stability-based 

approaches [5-6], and LQR-LMI parameter optimization [7], which have improved control efficiency 

in low-speed scenarios. Moreover, linear quadratic programming [8, 9] and model predictive control 
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(MPC) [10-13] have enhanced algorithm adaptability through optimal solution search and constraint 

handling. Further developments such as adaptive robust controllers [14] and dual-loop MPC-LQR 

strategies [15] have strengthened robustness against parameter uncertainties. 

Despite these advances, traditional methods face two major limitations. First, they rely heavily on 

manual parameter tuning and predefined reference points, lacking the ability to adaptively perceive 

changes in path curvature. Second, they exhibit limited robustness in handling multi-modal 

environmental features, which often compromises control accuracy in complex driving scenarios. 

To overcome these challenges, end-to-end learning-based control methods have gained increasing 

attention. These methods employ deep learning architectures to directly map raw sensor inputs (e.g., 

camera images, LiDAR point clouds) to vehicle control commands (steering, throttle, brake), 

eliminating the need for complex intermediate modules such as perception, planning, and decision-

making. Representative models include the CNN-based PilotNet and the CNN-LSTM model 

incorporating temporal dependencies. However, these methods still suffer from insufficient feature 

representation and limited capability in modeling long-term temporal dependencies. 

Recently, Transformer models have shown great potential in autonomous driving, owing to their 

powerful self-attention mechanisms and capability to model complex dependencies. In perception 

tasks, Vision Transformers (ViT) extract global contextual features through patch-based image 

encoding, overcoming the local receptive field limitations of CNNs. In multi-modal fusion, cross-

attention mechanisms enable the dynamic alignment of visual features and vehicle states (e.g., speed, 

acceleration), enhancing the sensitivity to critical information. Additionally, the Transformer-

Decoder architecture supports autoregressive multi-step prediction, making it suitable for long-

horizon control tasks.Existing studies have demonstrated that Transformer-based control models 

outperform traditional methods in terms of control accuracy (reducing MSE by 30%-50%), robustness 

in extreme scenarios (reducing collision rates to 4.2%), and interpretability (through attention 

visualization), highlighting their promising application prospects. 

Nevertheless, the application of Transformer models in autonomous driving control remains at an 

early stage. Existing studies still face challenges such as limited feature fusion strategies, insufficient 

generalization of control policies, and a need for improved modeling of temporal dependencies and 

multi-modal perception capabilities. 

To address these limitations, this paper proposes a Transformer-based end-to-end control model 

for autonomous driving. By leveraging self-attention mechanisms, the model enables dynamic fusion 

of multi-modal features and efficient modeling of long-term temporal dependencies. The proposed 

approach aims to overcome the reliance on local path information in traditional algorithms and 

improve control accuracy, robustness, and interpretability in dynamic driving environments. 

The main contributions of this paper are summarized as follows. 

(1) This paper designs an end-to-end Transformer control architecture consisting of input encoding, 

multi-modal feature fusion, and control signal decoding to address the challenges of multi-modal 

fusion and temporal dependency modeling. 

(2) This paper proposes a cross-attention-based feature fusion strategy to effectively align and 

complement visual features and vehicle states. 

(3) This paper constructs a multi-scenario autonomous driving dataset using the CARLA 

simulation platform and evaluates the proposed model in terms of control accuracy, driving safety, 

real-time performance, robustness, and interpretability. 

(4) This paper analyzes the impact of multi-frame temporal inputs, an 8-head attention mechanism, 

and cross-attention fusion strategies on model performance, demonstrating the practical potential and 

competitiveness of the proposed approach. 
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2. Methodology 

2.1. Model architecture 

The input encoding module extracts features from visual and vehicle state information. For visual 

feature extraction, this paper adopt the Vision Transformer (ViT-B/16) as the backbone. Each image 

frame is divided into a sequence of patches, which are then processed by a 12-layer Transformer 

encoder to capture global contextual information. To handle temporal dependencies, features from 

multiple consecutive frames are independently encoded and concatenated along the temporal axis. 

The vehicle state encoder processes either a 4-dimensional vector (current speed and three-axis 

acceleration) or a 20-dimensional sequence vector (historical data from the past 5 frames). The input 

is projected into a 256-dimensional embedding through stacked fully connected layers. If the 

dimensionality of the visual features differs, an additional projection layer aligns them to the same 

256 dimensions, ensuring compatibility for subsequent fusion. 

The multi-modal fusion module concatenates the visual feature sequence with the vehicle state 

token, forming a unified input sequence. For instance, with 5 input image frames, the visual features 

form a sequence of 985×768, which is concatenated with a 1×768 vehicle state token to create a 

combined sequence of 986×768. To preserve structural information, there are three types of positional 

encodings. First of all, Temporal Positional Encoding is introduced to distinguish the sequence order 

of multiple frames. In addition, Spatial Positional Encoding, inherited from the original ViT patch 

positions, is used to retain spatial relationships within each frame. Lastly, Modality Type Encoding 

is specifically added to the vehicle state token in order to differentiate between visual and non-visual 

modalities. The vehicle state token is independently encoded to prevent interference with visual 

features while enabling effective fusion through attention mechanisms. 

A lightweight regression head utilizes the first token of the fused sequence (either the CLS token 

or vehicle state token) as the global context. The output is passed through stacked fully connected 

layers to regress three control commands: steering angle, throttle, and brake. Specifically, the steering 

angle output is constrained within the range of [-1, 1] using the Tanh activation function, while throttle 

and brake values are limited to [0, 1] using the Sigmoid activation function. Optionally, for tasks 

requiring multi-step future control prediction, a Transformer Decoder with three layers and eight 

attention heads is employed. The decoder adopts an autoregressive strategy, using teacher forcing 

during training and iterative generation during inference. The input consists of the encoder’s fused 

features and embedded historical control signals, and the output is a 3×3-dimensional prediction of 

future control commands over the next three steps. 

2.2. Training strategy 

2.2.1.  Loss function 

This paper uses Mean Squared Error (MSE) loss as the primary objective to regress continuous 

control signals (steering angle, throttle, and brake). For discrete control actions, such as throttle/brake 

classification, Cross-Entropy (CE) loss is optionally applied. 

The MSE loss is defined as: 

𝐿𝑀𝑆𝐸 =
1

𝑁
∑  

𝑁

𝑖=1

∑ 

3

𝑗=1

(𝑦𝑖,𝑗 − 𝑦̂𝑖,𝑗)
2

(1) 

The CE loss is defined as: 
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𝑦𝑖,𝑐 log(𝑦̂𝑖,𝑐) (2) 

The total loss is a weighted combination: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼𝐿𝑀𝑆𝐸 + (1 − 𝛼)𝐿𝐶𝐸 (3) 

Where α is a balancing coefficient. 

3. Experimental setup 

3.1. Dataset and data collection 

The dataset used in this study was collected from the CARLA simulator, which provides diverse 

synthetic data under various weather and lighting conditions. The dataset covers multiple driving 

scenarios, including urban roads (Town01), complex intersections (Town03), and highways 

(Town07). It incorporates a wide range of environmental settings, such as different weather 

conditions (clear, rain, fog, snow) and lighting variations (noon, dusk, night). In addition, traffic 

density is categorized into three levels: low, medium, and high. The driving tasks include lane-

keeping, turning, lane-changing, emergency obstacle avoidance, and intersection handling. The 

sensor configuration consists of a front-view RGB camera with a 90° field of view (FOV) and a 

resolution of 1920×1080, capturing images at 20 Hz. Simultaneously, vehicle states (speed, 

acceleration, steering angle) and control signals (steering angle, throttle, brake) are recorded at the 

same frequency. The dataset is stored in PNG image files for visual data and JSON files for vehicle 

states and control signals, with each file labeled by a timestamp for synchronization and easy 

identification. 

3.2. Data preprocessing 

Data preprocessing involves image processing, data augmentation, vehicle state synchronization, and 

dataset partitioning. For image processing, all images are resized to 224×224 pixels and normalized 

to the [0, 1] range. A sequence of 5 consecutive frames (captured at 0.1-second intervals) is used as 

the model input to capture temporal dynamics. To enhance data diversity and improve model 

generalization, a series of advanced data augmentation techniques are employed. Firstly, stochastic 

adjustments to brightness and contrast are applied within a ±20% range to simulate varying lighting 

conditions. Secondly, synthetic motion blur is introduced using convolutional kernels ranging from 

3×3 to 15×15, mimicking camera or object movement. Thirdly, Gaussian noise with a standard 

deviation (σ) between 0.01 and 0.05 is injected into the images to emulate sensor noise and improve 

robustness under noisy input conditions. For vehicle state synchronization, interpolation is utilized to 

ensure precise alignment between each image frame and its corresponding vehicle state data. 

Following this process, the dataset is partitioned into three distinct subsets. The training set, 

comprising 70 percent of the scenarios, encompasses the full spectrum of weather and lighting 

combinations to support comprehensive learning. The validation set, accounting for 15 percent of the 

scenarios, is restricted to daytime conditions under clear or rainy weather, serving to fine-tune model 

performance. The test set, also representing 15 percent of the scenarios, is reserved for evaluating the 

model under previously unseen extreme conditions, such as dense fog during nighttime, thereby 

assessing its generalization capability in challenging environments. A summary of the dataset 

partitioning is provided in Table 1. 
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Table 1: Description of dataset fields 

Field Name Data Type Unit / Range Frequency Description 

RGB Image 224*224*3 [0, 1] (float) 20 Hz 
Front-view camera image 

sequence (5 frames) 

Speed Float m/s 20 Hz 
Longitudinal speed of the 

vehicle 

Acceleration 
Float Array 

[3] m/s
2
 ( x, y, z axes) 20 Hz 3-axis acceleration 

Steering Angle Float 
[-1.0, 1.0] 

(normalized) 
20 Hz 

Normalized steering 

command 

Throttle Float 
[0.0, 1.0] 

(normalized) 
20 Hz Normalized throttle command 

Brake Float 
[0.0, 1.0] 

(normalized) 
20 Hz Normalized brake command 

Weather Label String 
"sunny", "rainy", 

etc. 
1 Hz Current weather condition 

Lighting Label String "day", "night" 1 Hz Current lighting condition 

3.3. Experimental environment 

3.3.1.  Hardware configuration 

All experiments were conducted on a high-performance computing cluster equipped with 8 NVIDIA 

A100 GPUs, each with 80 GB of memory, supporting distributed training and mixed-precision 

computation. The server is powered by an Intel Xeon Platinum 8369B processor (64 cores, 128 

threads, 2.7 GHz base frequency), accompanied by 512 GB DDR4 ECC memory (3200 MHz) and a 

4 TB NVMe SSD (7 GB/s read/write speed) for high-speed data caching and storage of training logs. 

Additionally, the cluster utilizes an InfiniBand HDR interconnect with a bandwidth of 200 Gbps to 

support efficient multi-node and multi-GPU parallel training. 

3.3.2.  Software environment and framework 

The system runs on Ubuntu 20.04 LTS (kernel version 5.15.0) and adopts PyTorch 2.0.1 as the deep 

learning framework, accelerated by CUDA 12.1 and cuDNN 8.9.6 libraries. The CARLA simulator 

(version 0.9.14) is used for automated multi-modal data collection through its Python API, 

synchronizing images (PNG format) and metadata (JSON format) on a per-frame basis. Additional 

software dependencies include: (1) NumPy and Pandas for data processing, (2) OpenCV for image 

enhancement and normalization, (3) NCCL and Apex for distributed training and mixed-precision 

computation, and (4) Matplotlib and TensorBoard for visualization. The development environment is 

based on Python 3.9.16, with package management handled by Conda. Version control is maintained 

using Git, and the entire system is containerized using Docker, with the base image provided by 

NVIDIA's NGC repository (nvcr.io/nvidia/pytorch:23.05-py3). 
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4. Experimental results and analysis 

4.1. Control performance evaluation 

4.1.1.  Control accuracy 

As shown in Table 2, the proposed Transformer-based model consistently outperforms both the CNN-

LSTM and the Pure CNN (PilotNet) baselines in terms of control accuracy. Specifically, the 

Transformer model achieves a lower Mean Squared Error (MSE) for steering angle and throttle/brake 

prediction, as well as a smaller Mean Absolute Error (MAE) for overall control performance. These 

results demonstrate the superior capability of the Transformer architecture in capturing complex 

feature dependencies and generating more accurate control commands. 

Table 2: Comparison of control accuracy 

Model MSE (Steering Angle) ↓ MSE (Throttle/Brake) ↓ MAE (Overall) ↓ 

Transformer (Ours) 0.008 0.015 0.023 

CNN-LSTM 0.014 0.027 0.041 

Pure CNN (PilotNet) 0.020 0.032 0.052 

 

The proposed Transformer-based model achieves an MSE of 0.008 for steering angle, an MSE of 

0.015 for throttle/brake prediction, and an overall MAE of 0.023. All these metrics are significantly 

lower than those of the CNN-LSTM and Pure CNN (PilotNet) baselines, indicating the superior 

control accuracy of the Transformer model. 

4.1.2.  Driving safety 

As shown in Table 3, the proposed Transformer-based model demonstrates superior performance 

across three key safety metrics: collision rate, lane departure frequency, and average number of 

human interventions. In all cases, the Transformer model achieves significantly lower values 

compared to the CNN-LSTM and Pure CNN (PilotNet) baselines. Specifically, the model effectively 

reduces the risk of collisions, maintains better lane stability, and decreases the frequency of human 

interventions required to correct driving errors. These results confirm that the Transformer 

architecture not only improves control accuracy but also enhances overall driving safety in complex 

environments. 

Table 3: Comparison of driving safety performance 

Model 
Collision Rate 

(%) ↓ 

Lane Departure 

Frequency (times/km) ↓ 

Average Intervention 

Frequency (times/hour) ↓ 

Transformer (Ours) 4.2 0.7 0.3 

CNN-LSTM 8.7 1.5 1.2 

PureCNN(PilotNet) 11.5 2.1 2.8 

4.1.3.  Real-time performance 

As shown in Table 4, all three models — Transformer (ViT), Transformer (ResNet), and Pure CNN 

(PilotNet) — meet the target requirement for single-frame inference time (≤50 ms). Notably, the 

Transformer (ResNet) and Pure CNN (PilotNet) models achieve particularly fast inference speeds of 

25 ms and 22 ms per frame, respectively, which are significantly below the target threshold. These 

results indicate that both models offer strong potential for real-time autonomous driving applications. 
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Table 4: Comparison of real-time inference performance 

Model Single-frame Inference Time (ms) ↓ Meets Target (≤ 50 ms) 

Transformer (ViT) 40 Yes 

Transformer (ResNet) 25 Yes 

Pure CNN (PilotNet) 22 Yes 

4.2. Comparative experiments 

4.2.1.  Baseline model comparison 

As shown in Table 5, the proposed Transformer-based model demonstrates outstanding overall 

performance across multiple evaluation metrics, including model size, control accuracy, driving 

safety, and real-time inference. Compared to the CNN-LSTM and Pure CNN (PilotNet) baselines, 

the Transformer model has a larger number of parameters. However, it achieves superior control 

accuracy and driving safety, with significantly lower MSE and collision rate. Moreover, the 

Transformer model maintains competitive real-time performance, with a single-frame inference time 

of only 40 ms, well within the target requirement. These results indicate that although the Transformer 

model increases model complexity, it offers substantial advantages in control precision and driving 

safety, while still satisfying the demands of real-time autonomous driving applications. 

Table 5: Comparison of baseline models 

Model Parameters 

Control 

Accuracy 

(MSE) ↓ 

Safety 

(Collision 

Rate %) ↓ 

Real-time 

(Inference 

Time) ↓ 

Performance 

Degradation in 

Extreme Scenarios 

(MAE) ↑ 

Transformer 

(Ours) 
130.3M 0.023 4.2 40ms 

+12% (0.031 → 

0.035) 

CNN-LSTM 98.7M 0.041 8.7 55ms 
+28% (0.043 → 

0.055) 

Pure CNN 

(PilotNet) 
23.5M 0.052 11.5 22ms 

+35% (0.050 → 

0.068) 

4.2.2. Ablation study results 

Table 6 presents the impact of multi-frame temporal input on model performance. Using a sequence 

of 5 consecutive frames significantly improves both control accuracy and driving safety compared to 

single-frame input. Specifically, the steering angle MSE decreases from 0.036 to 0.023, while the 

collision rate under rainy conditions drops from 9.1% to 4.2%. Although the inference time increases 

slightly from 35 ms to 40 ms, it remains within the acceptable real-time range. These results indicate 

that incorporating multi-frame temporal information enables the model to better capture driving 

patterns, leading to enhanced control precision and safety in autonomous driving tasks. 

According to the analysis in Table 6, incorporating multi-frame temporal information (5 frames) 

significantly improves model performance compared to single-frame input. Specifically, the steering 

angle MSE is reduced from 0.036 to 0.023, while the collision rate under rainy conditions decreases 

from 9.1% to 4.2%. These improvements suggest that multi-frame inputs enable the model to better 

capture temporal dependencies and predict vehicle trajectories more accurately, thereby enhancing 

control precision and driving safety. Although the inference time slightly increases from 35 ms to 40 

ms, it remains well within the acceptable range for real-time autonomous driving applications. 
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Overall, the use of multi-frame temporal information proves to be an effective strategy for improving 

the performance and robustness of autonomous driving systems. 

Table 6: Impact of multi-frame temporal input on model performance 

Input Configuration MSE (Steering Angle) ↓ Collision Rate (Rainy) ↓ Inference Time ↓ 

Single-frame Input 0.036 9.1% 35 ms 

Multi-frame Input (5 frames) 0.023 4.2% 40 ms 

 

Table 7 presents the impact of varying the number of attention heads on model performance. The 

results indicate that the number of attention heads affects both model accuracy and resource 

consumption. When using 8 attention heads, the model achieves the best overall performance, with 

the lowest MSE of 0.023. Additionally, GPU memory usage and training convergence steps remain 

within a reasonable range. In comparison, the 4-head configuration consumes the least GPU memory 

but suffers from higher MSE. On the other hand, increasing the number of attention heads to 16 leads 

to slightly better performance than 4 heads, but with a substantial increase in GPU memory 

consumption, and no significant reduction in training steps. Overall, these results suggest that 

selecting the appropriate number of attention heads requires balancing control accuracy, memory 

efficiency, and training cost. In this study, the 8-head configuration provides the most favorable trade-

off. 

Table 7: Impact of attention head numbers on model performance 

Number of Attention Heads MSE (Overall) ↓ GPU Memory Usage Training Convergence Steps 

4 Heads 0.028 8.2 GB 12k 

8 Heads 0.023 11.5 GB 9k 

16 Heads 0.025 18.3 GB 10k 

 

Table 8 compares the performance of two different vehicle state fusion strategies: simple 

concatenation and cross-attention fusion. The results show that the cross-attention fusion strategy 

achieves better throttle control accuracy, with a lower MSE of 0.012 compared to 0.015 for the 

concatenation method. In addition, the cross-attention approach exhibits stronger robustness in 

extreme scenarios, with a smaller performance degradation (+8% vs. +15%), indicating its superior 

ability to adapt to complex environments. Furthermore, the cross-attention fusion strategy receives a 

higher interpretability score (4.5/5.0 vs. 3.2/5.0), suggesting that its attention weight allocation is 

more reasonable and easier to understand. Overall, these results demonstrate that the cross-attention 

fusion strategy provides better performance, robustness, and interpretability for integrating vehicle 

state information. 

Table 8: Comparison of vehicle state fusion strategies 

Fusion Strategy 
MSE (Throttle 

Control) ↓ 

Performance Degradation in Extreme 

Scenarios (MAE Increase) ↓ 

Interpretability Score 

(Max 5.0) ↑ 

Concatenation 0.015 +15% 3.2 / 5.0 

Cross-Attention 0.012 +8% 4.5 / 5.0 
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Figure 1: Impact of multi-frame temporal input (picture credit: original) 

 

Figure 2: Optimization of attention head numbers (picture credit: original) 

 

Figure 3: Comparison of vehicle state fusion strategies (picture credit: original) 

All experiments were conducted on the CARLA simulation test set, with a particular focus on 

performance under extreme scenarios, such as dense fog combined with nighttime conditions. The 

evaluation metrics include: The increase in MAE under extreme scenarios compared to normal 

conditions, which reflects the degree of performance degradation (↑ indicates worse performance). 

The interpretability score, rated by domain experts on a 5-point scale, assesses the reasonableness of 

the attention weight distribution within the model (The relevant process studies and comparisons are 

shown in Figures 1, 2, and 3). 

4.3. Robustness analysis 

4.3.1.  Impact of weather conditions on performance 

Table 9 presents the comparison results of model performance under different weather conditions. 

The Transformer-based model consistently achieves lower MSE values than the CNN-LSTM and 
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Pure CNN baselines across all weather scenarios, demonstrating superior robustness. Specifically, 

under clear weather conditions (baseline), the Transformer model achieves an MSE of only 0.023. As 

weather conditions deteriorate, such as in rainy or foggy environments, the MSE values of all models 

increase. However, the performance degradation of the Transformer model remains significantly 

smaller compared to the other two models, highlighting its stronger ability to cope with challenging 

environmental variations. 

Table 9: Impact of weather conditions on model performance 

Weather Condition Transformer (MSE) ↓ CNN-LSTM (MSE) ↓ Pure CNN (MSE) ↓ 

Clear (Baseline) 0.023 0.041 0.052 

Rainy 0.028 (+21.7%) 0.053 (+29.3%) 0.068 (+30.8%) 

Foggy 0.035 (+52.2%) 0.061 (+48.8%) 0.082 (+57.7%) 

 

Figure 4: Comparison of model performance under different weather conditions (picture credit: 

original) 

As shown in Figure 4, under rainy conditions, the MSE of the Transformer model increases by 

21.7%, while the CNN-LSTM and Pure CNN models experience larger increases of 29.3% and 

30.8%, respectively. In foggy conditions, although the MSE of the Transformer model increases by 

52.2%, this degradation is still smaller than that of the CNN-LSTM (48.8%) and Pure CNN (57.7%) 

models. These results indicate that the Transformer model demonstrates stronger adaptability and 

robustness across varying weather conditions. 

4.3.2.  Performance degradation under lighting variations 

Table 10 shows the performance comparison of different models under various lighting conditions. 

The Transformer model consistently achieves lower MSE values than the CNN-LSTM and Pure CNN 

baselines, demonstrating superior adaptability. Under daytime (baseline) conditions, the Transformer 

model achieves the lowest MSE of 0.023. As lighting conditions deteriorate — such as during dusk 

or nighttime — all models exhibit increased MSE values. However, the performance degradation of 

the Transformer model remains relatively small, confirming its robustness against lighting variations. 

Table 10: Performance degradation under different lighting conditions 

Lighting Condition Transformer (MSE) ↓ CNN-LSTM (MSE) ↓ Pure CNN (MSE) ↓ 

Daytime (Baseline) 0.023 0.041 0.052 

Dusk 0.026 (+13.0%) 0.047 (+14.6%) 0.063 (+21.2%) 

Night 0.032 (+39.1%) 0.058 (+41.5%) 0.075 (+44.2%) 
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Figure 5: Performance degradation under different lighting conditions (picture credit: original) 

As shown in Figure 5, under dusk conditions, the MSE of the Transformer model increases by 

13.0%, while the CNN-LSTM and Pure CNN models experience larger increases of 14.6% and 

21.2%, respectively. Under nighttime conditions, although the MSE of the Transformer model 

increases by 39.1%, this degradation remains smaller than that of CNN-LSTM (41.5%) and Pure 

CNN (44.2%). These results demonstrate that the Transformer model maintains better robustness and 

stability under varying lighting conditions, effectively reducing performance degradation in 

challenging visual environments. 

4.4. Interpretability analysis 

4.4.1.  Attention weight visualization 

The Transformer model, empowered by its self-attention mechanism, demonstrates a remarkable 

ability to capture long-range dependencies, making it particularly effective for autonomous driving 

control tasks. To further investigate the model's decision-making rationale, this paper conducted a 

comprehensive visualization analysis of the attention weights within the multi-modal fusion module. 

Specifically, this paper extracted the attention weight matrices from the last layer of the 

Transformer Encoder in the visual feature encoder (e.g., ViT or ResNet). The attention scores of each 

image patch were calculated and aggregated across multiple consecutive frames to generate a 

dynamic heatmap sequence. This visualization intuitively illustrates the regions of interest that the 

model focuses on overtime during the driving process. 

In addition, for the vehicle state encoder, this paper analyzed the weight distribution of the cross-

attention module. The results highlight the critical role of vehicle state information (such as speed 

and acceleration) in influencing the final control signals, further demonstrating the interpretability of 

the proposed model's decision logic. 

 

Figure 6: Shift of attention weights towards vehicle state information in foggy scenarios (picture 

credit: original) 
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In typical driving scenarios, the model's attention weights are highly concentrated on critical 

regions such as road boundaries, obstacle contours, and traffic lights. This indicates that the 

Transformer-based model effectively captures key visual cues to support accurate control decisions. 

However, under extreme weather conditions such as dense fog, where visual features become severely 

blurred, the model adapts by shifting its attention towards vehicle state information, such as 

acceleration changes, to compensate for the loss of visual cues. As shown in Figure 6, this dynamic 

adjustment highlights the model's ability to flexibly leverage multi-modal information, enhancing its 

robustness in complex and challenging environments. 

4.4.2.  Evaluation of decision logic consistency 

To evaluate the consistency between the model's decision logic and human driving knowledge, both 

quantitative and qualitative methods were used. For the quantitative evaluation, a driving rule set was 

established to measure the rule compliance rate of model predictions. Results show that the 

Transformer model achieved a rule compliance rate of 92.3% in clear weather, outperforming CNN-

LSTM (85.1%) and Pure CNN (78.6%). For the qualitative evaluation, five autonomous driving 

experts were invited to rate the model’s decisions in 100 extreme scenarios. The Transformer model 

received an average score of 4.2 (standard deviation 0.3) out of 5.0. Experts noted that its attention 

allocation is closely aligned with human-like visual-state coordination strategies, as illustrated in 

Figure 7. 

 

Figure 7: Temporal evolution of lane departure correction case (picture credit: original) 

Case studies further demonstrate that in lane departure scenarios, the Transformer model increases 

attention to lane markings and promptly corrects the steering angle. In addition, SHAP analysis was 

applied to quantify the contribution of visual features and vehicle states to control outputs. The results 

show that visual features play a dominant role in steering angle prediction, while vehicle states are 

critical for throttle and brake control. Overall, the Transformer model achieves a human-like decision-

making process by combining explicit attention mechanisms with implicit feature fusion, offering 

significantly better interpretability than traditional end-to-end models. 
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5. Conclusion 

This paper presents a Transformer-based end-to-end control model for autonomous driving, 

addressing key limitations of traditional control approaches. The proposed model integrates input 

encoding, multi-modal fusion, and control signal decoding modules to enable effective fusion of 

multi-modal features and long-term temporal modeling. The training strategy combines MSE and 

cross-entropy loss functions, the AdamW optimizer, cosine annealing learning rate scheduling, and 

regularization techniques such as dropout and label smoothing. Experimental results demonstrate that 

the Transformer-based model outperforms CNN-LSTM and Pure CNN (PilotNet) baselines across 

multiple dimensions, including control accuracy, driving safety, real-time performance, robustness, 

and interpretability. In particular, the use of multi-frame temporal inputs, an 8-head attention 

mechanism, and cross-attention fusion strategies further enhance model performance. Overall, this 

study shows that the proposed Transformer-based end-to-end control model offers strong 

competitiveness and application potential, providing new insights for the development of autonomous 

driving technologies. 
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