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Abstract. The classification of music information using various deep learning models is 

increasingly popular in the field of Music Information Retrieval research. However, as most 

proposed works focus on western music and musical instruments, little attention is given to 

traditional Chinese music. This paper proposes a 1-D Convolutional Neural Network (1-D CNN) 

using only raw audio waveform as input, to undertake the task of traditional Chinese musical 

instruments classification. This paper starts with a review of the current state of research on the 

related field, then discuss the proposed model and its data in detail, followed by its performance 

metrics and then a conclusion on the experiment. The result shows that 1-D CNN provides 

competitive and even superior results when compared to its 2-D versions as well as when 

compared to traditional models. 

Keywords: Convolutional Neural Networks, Deep Learning, Instrument Classification, Raw 

Waveforms, Chinese Traditional Music. 

1.  Introduction 

This paper starts with an introduction to the musical information retrieval (MIR) task in general, then a 

literature review of related works proposed. The pre-processing of the dataset containing Chinese 

traditional musical instrument songs is examined. A detailed view of the main proposed architecture of 

the convolutional neural network is then given, followed by the network’s performance results. This 

paper concludes with a summary as well as a brief discussion on potential further improvements. 

In recent years, the efficiency and accuracy pertaining to tasks involved in Musical Information 

Retrieval increasingly benefit from research in the field of Machine Learning, Computational 

Intelligence, Signal Processing, etc. Such tasks include but are not limited to music classification, 

musical instrument recognition, performer auto-tagging, music auto-tagging, music recommendation 

system construction, music generation, and automatic music transcription. In particular, many 

experiments have been done to solve music classification problems. 

The frequently applied machine learning methods include K-Nearest Neighbor (k-NN) [1,2,3,4,5,6], 

Support Vector Machine (SVM) [7,8,9], Long Short-Term Memory (LSTM) [10,11,12,13,14,15], and 

Convolutional Neural Network (CNN) and its variants [4,16,17,18,19,20,21,22,23,24], and ensemble 

models [25,26,27,28,29,30,31,18]. However, a majority of research and experiments done within the 

field of musical instrument recognition or music classification are targeted at those belonging to western 

culture, mostly of European and North American origin. Many datasets containing western music and 
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metadata are available and open to the public, for example, the IRMAS dataset [32], the Slakh dataset 

[33], the Million Song Database [34], and the MagnaTagATune dataset [35]. In comparison, less 

attention has been given to Chinese traditional music and instruments. At the same time, as deep learning 

models continue to gain momentum both for their advanced capabilities at learning features, as well as 

for being able to deal with multi-dimension data, more and more researchers consider using them to deal 

with musical instrument recognition problems, but to date, unfortunately, the number of experiments 

done on Chinese musical instruments using deep learning models is also limited. Western and Chinese 

traditional musical instruments tend to differ much in sound qualities, timbre texture, beat-related 

properties, pitch-related qualities, etc. [21] This may pose a hindrance to problem-solving in the MIR 

field in the future. 

This paper mainly proposes a flexible 1-D neural network for traditional Chinese musical instruments 

classification using a relatively low amount of data and requiring fewer trainable parameters, and 

provides competitive results compared to other models using approaches such as KNN, 2-D CNN, 

LSTM, etc. seen in recent years. 

2.  Literature review 

In general, many traditional research methods require extensive feature engineering or data pre-

processing so that the models can make accurate predictions. Experts such as sound engineers or musical 

instrument performers, who are capable of or could facilitate the feature-engineering process within the 

field of Chinese traditional musical instruments are scarce. Besides, the amount of available Chinese 

traditional music information data for research and experiments is currently low, as only a few open 

databases containing traditional Chinese music with viable metadata are normally accessible [19,36]. 

The use of acoustic features in turn determines the architecture of the respective models, affecting 

hyperparameters such as filter size, strides, etc. In contrast, deep learning models proposed in recent 

years frequently make use of multiple audio features extracted through transformation of original audio 

data into respective power-spectrums, which are then fit into 2D Convolutional Neural Networks to 

make use of their image feature recognition ability. Kratimenos et al. [37] utilized 2-D CNN with 

constant Q-transform (CQT) as input for instrument identification. In 2017, Han et al. [38] and Pons et 

al. [24] extracted Mel-frequency cepstrum coefficients from original data and fit them into 2-D CNNs 

respectively, obtaining results within a similar range. 

1-D Convolutional Neural Network, on the other hand, is capable of dealing with time-series data 

without additional implementation or feature-fitting, thus is very suitable for dealing with music 

classification problems where time-signal information is already available. In 2018, Pons et al. [39] 

constructed a 7-layer 1-D CNN using a small kernel filter size and achieved 99% accuracy, without 

needing to extract any power spectrum from the original raw audio waveform. 

Similarly, Lee et al. [40] in 2017 proposed a sample-level 1-D CNN for music tagging, using only 

audio waveform as input data. The model is made up of 11 convolutional layers and the output layer has 

10 units, with sigmoid activation function, followed by a dropout layer with its dropout rate set to 0.5, 

achieving excellent results and producing a solid sample-level baseline for future models. 

3.  Dataset 

The ChMusic dataset [1] is a traditional Chinese music dataset constructed in 2021 intended to evaluate 

machine learning model performance on MIR problems targeted at traditional Chinese music. The 

dataset consists of 55 files in total, each varying in length from 112 seconds to a maximum of 220 

seconds, belonging to 11 different traditional Chinese musical instruments. Each file contains one single 

mono recording of one type of traditional Chinese musical instrument. The sampling rate of all files is 

44100 Hz. 

For pre-processing, each recording is re-cut into a collection of 5-second-long clips at the original 

sampling rate and re-labeled with their respective instrument number. Recordings with a time length not 

divisible by 5 seconds have leftover clips that are right-padded with zeros until reaching 5 seconds in 

total time, to ensure uniformity in sample data. After pre-processing, the dataset contains 820 samples, 
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220500 timesteps each (44100 samples * 5 seconds), with 1 feature (signal strength). The samples are 

stored in Numpy Array format and matched with respective labels indicating one of the available eleven 

instruments possibly present in the recording. The dataset is then split into training and validation using 

a ratio of 8:2. To measure the neural network model, another private dataset is prepared in a similar 

fashion and contains 224 samples with 220500 timesteps in each, to be used as test data. Traditional 

musical instruments and their corresponding labels are shown in Table 1. 

Table 1. Traditional instruments and corresponding labels. 

Instrument Name Label 

Er Hu（二胡） 1 

Pi Pa（琵琶） 2 

San Xian（三弦） 3 

Di Zi（笛子） 4 

Suo Na（唢呐） 5 

Zhui Qin（坠琴） 6 

Zhong Ruan（中阮） 7 

Liu Qin（柳琴） 8 

Gu Zheng（古筝） 9 

Yang Qin（扬琴） 10 

Sheng（笙） 11 

4.  Proposed 1-D CNN using raw audio waveform 

4.1.  Architecture 

The architecture of the proposed model features multiple convolution blocks, each comprised of a 

convolutional layer, a batch normalization layer, and a max-pooling layer, see Figure 1. The input layer 

takes input data, then passes it into the stack of convolution blocks that follows. 

Finally, a global max pooling layer downsamples the obtained input representation. The tensor is 

flattened, then passed into two fully connected layers, the second one of which maps the outcome into 

a single class, represented using an integer. The result is then compared with the prepared label data to 

measure the model’s performance. An overview of the proposed model’s architecture as well as its 

hyperparameters can be seen in Table 2. 
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Figure 1. Architecture of 1-D convolutional layer. 

Table 2. Architecture of proposed model. 

Layer # Filters Kernel Size Pool Size Stride Output Shape 

Input - - - - 220500 

Conv 1D 128 6 - 3 128*73500 

Conv 1D 1 128 6 - 1 128*73500 

Max Pooling 1D - - 3 3 128*24500 

Conv 1D 2 256 3 - 1 256*24500 

Max Pooling 1D 1 - - 3 3 256*8165 

Conv 1D 3 256 3 - 1 256*8165 

Max Pooling 1D 2 - - 3 3 256*2721 

Conv 1D 4 512 3 - 1 512*2721 

Max Pooling 1D 3 - - 3 3 512*907 

Conv 1D 5 512 1 - 1 512*907 

Global Max Pooling 1D - - - - 512 

Flatten - - - - 512 

Dense - - - - 48 

Output - - - - 11 

4.2.  Training 

The training dataset is reshaped into a 3-dimensional tensor to satisfy the keras 1-D convolutional layer 

input shape specification, with 1 feature at each time step, and is then passed into the 1-D CNN model. 

The hyper-parameters are fine-tuned to reduce overfitting and generate better feature representation as 

well as to avoid vanishing gradient problems. Hyperparameters play an important role in determining 

the model’s final classification accuracy, and frequently, the involved tuning process would often take 

manual effort (through trial and error) and requires ample time. Approaches to the tune hyperparameter 

other than extensive trials such as random searches or grid searches are becoming more and more widely 

used. Random or grid search methods both aim to narrow down the required search space of optimal 
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hyperparameter values and provide that space range to the holistic problem-solving algorithm for 

automatic optimization. 

The model’s hyperparameter is initially set to have a learning rate of 0.0002 and trained using Adam, 

SGD, Ftrl, Adagrad, Adamax, and RMSprop optimizers. 

In the dropout layer, the initial dropout rate is set to 0.2 to prevent overfitting. The activation 

functions for convolutional layers during experiments include rectified linear unit (RELU), leaky 

rectified linear unit (Leaky RELU), and hyperbolic tangent activation function (TANH), etc. The range 

of values for the hyperparameter searched is shown in Table 3. 

Table 3. Hyperparameter Search Range. 

Hyperparameter Search Space 

Filter Size Kernel Size 

Activation Function 

Optimization Method 

Dropout Rate 

{64:512} 

{2,3,4,6,8} 

{ReLu, Leaky ReLu, Linear, Sigmoid, Tanh} 

{Adam, Adamax, SDG, RMSprop, Adadelta} 

{0:0.5} 

The model is compiled with a sparse categorical cross-entropy loss function. The training process took 

40 epochs on the prepared dataset, and each epoch took an estimated 2 minutes on a single RTX2070 

GPU. The experiment is done on Ubuntu 22.04 LTS, with 16Gb of RAM, using Python 3.10 

environment, keras API with TensorFlow backend [41]. 

4.3.  Performance 

During training, it is observed that with each epoch the accuracy of the model increases. For the best-

performing proposed model, the Adam optimizer is considered, and the model used the set of 

hyperparameter values mentioned above in section 4.1. The convolutional layers uniformly use the leaky 

rectified linear unit (Leaky ReLu) as activation function which resulted in best accuracy. In this paper, 

leaky ReLu function is considered as 1. 

LeakyReLu(z) = {
α ∗ (z), ifz≤0
(z), ifz≥0

} (1) 

The Leaky ReLu function is used in the input layer and first 3 convolutional blocks, with α set to 0.2 for 

each layer. The accuracy score is obtained via 

Accuracy =
CorrectlyClassifiedInstrument

NumberOfClipsContainingSingleInstrument
(2) 

and is used to measure the performance of the proposed model. The final best accuracy of classification 

is 97.6% (validation) and 93.3% (test). Compared to 93% (validation) accuracy obtained by Solanki & 

Pandey [42] in their proposed 2-D CNN, the proposed model provides a superior result. And the 

proposed model requires no feature extraction as it solely relies on the raw audio waveform as input, 

reducing the complexities of network. The sample-level CNN model constructed by Lee et al. [40] 

requires 1.9 106 total trainable parameters, roughly 50% more parameters to train compared to the 

proposed model. The ChMusic dataset providers Gong et al. [1] utilized a KNN model in 2021 training 

on the same dataset and obtained as highest as 94% in terms of accuracy, but also required extracting 

twenty-dimension MFCCs from each frame, resulting in increased training time and less portable model 

architecture. 

5.  Conclusion 

Currently, the availability of data on traditional Chinese musical instruments remains low, and feature-

engineering requires much cost. The unique capability of 1-D CNN in the task of music classification, 

specifically musical instrument recognition, continues to prove valuable as it poses little to no 
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requirement on the type of input data. Using only raw audio waveform, this paper successfully proposes 

a flexible 1-D CNN model and achieves competitive results when compared to both 2-D CNN models 

and traditional models, while requiring less or easier training specifications. Besides being the first 1-D 

CNN model built for traditional Chinese musical instruments with no feature-extraction involved, the 

novelty of the proposed solution also lies in its lightweight as it has proven to be efficient with few 

trainable parameters. Also, the end result of 97.6% accuracy achieved on the ChMusic dataset [1] 

provided a new comparable measure for other researchers interested in adopting variant CNN models. 

Nevertheless, in future research, the potential to apply more 1-D CNN generalization is well worth 

pursuing as it may even further increase the robustness and performance of the model. 
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