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Abstract. In this paper, a hybrid kernel extremum learning machine (PSO-HKELM) model
optimized based on particle swarm algorithm is proposed for solving the classification
prediction challenge of the synergistic optimization of environmental protection benefits and
operational efficiency in industrial production. The experimental results show that the model
significantly outperforms the traditional decision tree (0.733-0.799), random forest (0.817-
0.955) and gradient boosting model (0.785-0.962) in the core metrics such as Accuracy
(0.895), Recall (0.895), Precision (0.887) and F1 Score (0.876). 0.785-0.962), in which the
classification accuracy is improved by 4.08% compared with the second best random forest. In
particular, through the global parameter optimization of the particle swarm algorithm, the
model achieves a high equilibrium F1 value of 0.876 between recall and precision (leading by
5.9%-13.3%), which effectively alleviates the contradiction of the hybrid kernel function's
sensitivity to the sample category. Although the AUC value (0.926) is slightly lower than
CatBoost (0.962), the model demonstrates superior generalization ability and robustness in
combination with the systematic advantages of other metrics. The study shows that the
synergistic mechanism of hybrid kernel architecture and population intelligence optimization
strategy can significantly improve the classification performance of the extreme learning
machine, which provides a solution to the multi-objective optimization problem in industrial
scenarios that takes into account the model accuracy and stability, and is of practical guidance
value for promoting the intelligent transformation and sustainable development of the
manufacturing industry.

Keywords: Particle swarm algorithms, hybrid kernel limit learning machines, efficiency co-
optimization.

1. Introduction

Environmental regulation refers to policies, regulations and technical standards formulated by the
government to protect the ecological environment and reduce pollution, such as pollutant emission
limits, resource use efficiency requirements, and green technology promotion [1]. The impact of such
policies on the operational efficiency of factories is twofold: on the one hand, in the short term, strict
environmental requirements may increase the compliance costs of firms, such as the purchase of
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pollution treatment equipment, the improvement of production processes, or the introduction of
cleaner technologies, which leads to an increase in the initial investment and production costs, and
may even reduce short-term productivity as a result of capacity adjustments [2]. On the other hand, in
the long run, environmental regulations can force enterprises to innovate, and achieve the “innovation
compensation effect” by optimizing production processes, improving resource utilization or
developing green products. The use of energy-saving equipment can reduce the cost of energy
consumption, while the circular economy model can reduce the cost of waste disposal [3]. In addition,
enterprises that comply with environmental standards are more likely to receive policy subsidies or
market recognition, thus enhancing brand value and long-term competitiveness.

The impact of environmental regulations on plant efficiency varies by industry and region. Heavily
polluting industries (e.g., chemicals, steel) may face greater cost pressures, while technology-intensive
industries are more likely to offset compliance costs through innovation [4]. In addition, flexibility
and enforcement of environmental policies are crucial. For example, carbon emissions trading
mechanisms, which incentivize companies to reduce emissions on their own through market-based
means, may be more conducive to balancing environmental protection and efficiency than one-size-
fits-all administrative orders.

With the explosive growth in the amount of industrial data, machine learning algorithms have
shown significant advantages in predicting the efficiency of plant operations. Traditional methods rely
on manual experience or linear models, which are difficult to deal with complex nonlinear
relationships and multivariate interactions, whereas machine learning is able to mine potential laws
from massive data and improve prediction accuracy and real-time performance [5]. Machine learning
models (e.g., random forests, support vector machines, neural networks) can integrate production data
(e.g., equipment operating parameters, energy consumption, raw material consumption),
environmental data (e.g., temperature and humidity, pollutant concentration), and management data
(e.g., scheduling plans, maintenance records) to establish a comprehensive evaluation system for
operational efficiency. The model can identify inefficient links and make optimization suggestions [6].
In complex production scenarios, reinforcement learning algorithms can dynamically optimize
production scheduling and resource allocation by simulating different decision paths. The relationship
between environmental regulation and plant operational efficiency is characterized by “short-term
pressure and long-term benefits”, while machine learning provides a new path to solve the trade-off
between environmental protection and efficiency through accurate prediction and intelligent decision-
making [7]. In the future, with the popularization of the Internet of Things and digital twin technology,
machine learning will further promote the transformation of factories into green and intelligent, and
achieve the goal of sustainable development. In this paper, we classify and predict the factory
operation efficiency of hybrid kernel limit learning machine based on particle swarm algorithm, which
provides model support for cracking the trade-off problem between environmental protection and
efficiency.

2. Data sources

The dataset used in this experiment is a private dataset, which contains data from 285 firms covering
three dimensions of environmental regulation intensity (environmental investment, emission
compliance rate, and penalty record), firm characteristics (size, industry, and age), and operational
efficiency indicators (asset turnover, labor cost, and R&D intensity), with the target variables of
operational efficiency ratings of A, B, and C. The dataset can be used to explore the dynamic
association between resource deployment and operational efficiency of firms under environmental
policy constraints, and to explore the dynamic association between resource deployment and
operational efficiency of firms under environmental policy constraints. It can be used to explore the
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dynamic association between enterprise resource allocation and operational efficiency under
environmental policy constraints. Some of the data are shown in Table 1.

Table 1. Selected Partial Dataset

Env regulation
strength

Env investment
ratio

Emission
compliance

Asset
turnover

Labor cost
ratio

rd
intensity

Efficiency
rating

5.1 2 81 1.69 31.3 1.8 C
8.8 4 98 1.29 28.3 5.3 C
6.8 2.2 66 1.45 37.5 4.1 C
3.8 4.3 78 1.7 34.1 6.3 C
3.9 4.8 69 1.97 41.8 0.7 C
6 0.7 81 1.41 19 2.4 B

3.1 3.3 79 1.36 43.3 1.9 C
7.7 1.8 72 1.39 24.9 0.6 C
6.4 2.8 98 1.97 23.8 6.8 A

3. Method

3.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization algorithm based on group intelligence. Its core
idea originates from the simulation of the collaborative foraging behavior of biological groups such as
flocks of birds or schools of fish. In the algorithm, each candidate solution is abstracted as a
“particle”, and all the particles search for the optimal solution through iteration in the solution space.
Each particle has two attributes: position represents the current solution, and velocity determines its
search direction and step size. The particles constantly track two key reference values during the
search process: one is the particle's own historical optimal position (individual extreme value),
reflecting individual experience; the other is the current optimal position of the whole group (global
extreme value), reflecting group collaboration. Through the dynamic balance between individual and
group experience, particle swarm can be efficiently explored and exploited in the solution space [8].
The network structure of the particle swarm algorithm is shown in Figure 1.
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Figure 1. The network structure of the particle swarm algorithm

The core update mechanism of the algorithm contains a dual iteration formula for velocity and
position. The velocity update formula is:

where    is the inertia weight, which controls the tendency of the particle to keep the original
velocity;    and   are the individual cognitive factor and the social cognitive factor, respectively,
which determines the particle's movement to the individual extreme value and the global extreme
value intensity. The position update then follows:

During the iterative process, the particle continuously adjusts the search trajectory through the
synthesis of velocity vectors, which preserves its own exploration experience and absorbs the group
optimal information.

3.2. Hybrid Kernel Extreme Learning Machine

Hybrid Kernel Extreme Learning Machine (HKELM) is a machine learning model that combines the
advantages of the kernel method with the efficiency of Extreme Learning Machine (ELM). Its core
principle is to improve the model's ability to adapt to complex data by fusing kernel functions with
different characteristics. The traditional ELM uses a randomly generated single hidden layer structure,
which is fast to train but may be underfitted due to insufficient hidden layer nodes when dealing with
high-dimensional nonlinear problems. Kernel Extreme Learning Machine (KELM) enhances the
nonlinear modeling capability by introducing a kernel function to implicitly map the data to a high-
dimensional space, but a single kernel function (e.g., Gaussian kernel or polynomial kernel) is often
difficult to balance local feature sensitivity with global trend capture [9]. Hybrid kernel ELM
constructs a hybrid kernel matrix by linearly combining multiple kernel functions, e.g., combining a
localized Gaussian kernel with a global polynomial kernel, thus significantly improving the model's

v(t + 1) = w − v(t) + c1 − rand − (pbest − x(t)) + c2 − rand − (gbest − x(t)) (1)

w

c1 c2

x(t + 1) = x(t) + v(t + 1) (2)



Proceedings	of	the	7th	International	Conference	on	Computing	and	Data	Science
DOI:	10.54254/2755-2721/2025.23815

87

ability to characterize heterogeneous data while retaining the efficient computational properties of
ELM.

The mathematical model of the hybrid kernel ELM is realized by weighted integration of the
outputs of different kernel functions. Specifically, given two types of kernel functions    and   ,
the hybrid kernel can be defined as:

where    is a weight parameter used to regulate the contribution of the two types of kernels.
During training, the model determines the optimal weights through an optimization algorithm (e.g.,
cross-validation or heuristic search) so that the hybrid kernel can adapt itself to the data distribution
characteristics.

3.3. Hybrid kernel limit learning machine based on particle swarm algorithm optimization

In PSO-HKELM, the optimization goal of the particle swarm algorithm is to construct a multi-
dimensional parameter space containing the kernel parameters, hybrid weights, and regularization
coefficients for the hybrid kernel limit learning machine, and to approximate the optimal parameter
configurations by iteratively updating the particle positions. Specifically, each particle corresponds to
a set of candidate parameters, and its position vector encodes the values of these parameters. When the
algorithm is initialized, the particle population is randomly distributed in the parameter space and the
performance of each particle is evaluated by a fitness function (usually cross-validation mean square
error or classification accuracy). During the iterative process, the particles update their speed and
position according to the individual historical optimal position and the group global optimal position,
and balance the local exploration and global exploitation capabilities through inertia weights,
individual cognitive factors, and social cognitive factors. This dynamic adjustment mechanism enables
the particle swarm to quickly jump out of the local optimum and efficiently search for the region with
the highest fitness in the parameter space, thus determining the optimal way of combining the hybrid
kernel functions [10].

The optimization process of PSO-HKELM can be divided into three stages: first, construct the
hybrid kernel ELM model, define the type of kernel function and the parameters to be optimized;
second, design the particle coding strategy, map the parameters into particle position vectors, and set
the hyperparameters such as the number of iterations of PSO and the size of the population; and lastly,
update the particle state through multiple rounds of iterations to output the optimal parameter
combination and train the final model. The method solves the problems of strong coupling of hybrid
kernel parameters and difficulty of manual parameter tuning through the global search capability of
PSO, while retaining the advantages of fast training speed and suitability for high-dimensional data of
ELM.

4. Result

In terms of parameter settings, the PSO population size is 30, the number of iterations is 100, and the
individual/population learning factors are both 2.0; the HK-ELM regularization parameter C searches
in the range of [1e-3, 1e3], the RBF kernel parameter γ in the range of [1e-4, 1e2], the polynomial
kernel order d ∈ {2,3,4,5}, and the hybrid kernel weighting coefficients α ∈ [0,1], and is divided by
the 7:3 ratio between the training set and test set. For hardware and software configuration, Matlab
R2024a, Windows 11, Intel i7-12700H processor, 16GB DDR4 memory, and NVIDIA RTX 3060
(6GB video memory) are used to accelerate matrix operations.

K1 K2

Khybrid = λK1 + (1 − λ)K2 (3)

λ
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First experiments were conducted using Decision Tree, Random Forest, Adaboost, Gradient
Boosting Tree, CatBoost and Our model to output the results of the model test as shown in Table 2.
Comparison of each metric is done as shown in Fig. 2.

Table 2. Model evaluation results

Model Accuracy Recall Precision F1 AUC

Decision Trees 0.733 0.733 0.764 0.744 0.799
Random Forest 0.86 0.86 0.876 0.817 0.955

Adaboost 0.709 0.709 0.843 0.759 0.873
Gradient Boosting Tree 0.849 0.849 0.732 0.785 0.953

CatBoost 0.837 0.837 0.767 0.796 0.962
Our model 0.895 0.895 0.887 0.876 0.926

Figure 2. Comparison of each metric

From the experimental results, the hybrid kernel extreme learning machine (Our model) optimized
based on particle swarm algorithm shows significant advantages in the classification prediction task.
In the core metrics, Accuracy (0.895), Recall (0.895), Precision (0.887) and F1 Score (0.876)
outperform the traditional decision tree (0.733-0.799), the integrated model Random Forest (0.817-
0.955), and the gradient boosting series (0.785-0.962). 0.962), where Accuracy improves by 4.08%
over the next best Random Forest, indicating better overall predictive ability. Notably, the model
achieves high equilibrium between Recall and Precision (F1 scores lead by 5.9%-13.3%), indicating
that the particle swarm algorithm effectively balances the sensitivity of the hybrid kernel function to
positive and negative samples through parameter global optimization search. Although the AUC value
(0.926) is slightly lower than that of CatBoost (0.962), the difference may originate from the slightly
weaker adaptation of the hybrid kernel structure to the complexity of the feature space partition
interface, but combined with the all-around improvement of other indexes, the optimization model
still shows stronger generalization ability and robustness, which verifies the synergy between the
hybrid kernel architecture and the swarm intelligent optimization strategy in improving the
performance of the extreme learning machine. The synergy between the hybrid kernel architecture and
the population intelligence optimization strategy is verified.

5. Conclusion

In this study, a hybrid kernel extremum learning machine model (PSO-HKELM) based on particle
swarm algorithm optimization is proposed for the co-optimization challenge of environmental
protection benefit and operation efficiency in industrial production. The experimental results show
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that this intelligent optimization model demonstrates significant advantages in the task of classifying
and predicting the operational efficiency of a plant: its core evaluation indexes Accuracy (0.895),
Recall (0.895), Precision (0.887) and F1 Score (0.876) all comprehensively outperform those of the
traditional decision tree (0.733-0.799), the stochastic Forest (0.817-0.855) and Gradient Boosting
Series model (0.785-0.862), in which the overall prediction accuracy is improved by 4.08% compared
with the sub-optimal Random Forest, which verifies the effectiveness of the model architecture
design. Of particular interest is that this model achieves a simultaneous improvement in check-
accuracy performance while maintaining a high check-all ability, with F1 scores 5.9%-13.3% ahead of
the comparison model, indicating that the global optimization-seeking mechanism of the particle
swarm algorithm effectively balances the sensitivity difference between the hybrid kernel function on
positive and negative samples, and successfully cracks the adaptive limitations of the single kernel
function model for the complex classification task.

The theoretical value of this study lies in the construction of a machine learning framework that
integrates the dynamic adaptation mechanism of kernel function and population intelligent
optimization, which provides a new methodological support for the multi-objective optimization of
complex industrial systems. The practical significance of this study lies in the fact that the
interpretable prediction model helps manufacturing enterprises to break through the decision-making
dilemma of “green transformation” and “efficiency enhancement”, and provides a reliable algorithmic
tool for the construction of environmentally friendly smart factories, which is an important reference
value for the promotion of sustainable development of the manufacturing industry.
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