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Abstract. Super-resolution (SR) based on deep convolutional neural networks is a rapidly 

developing field with many real-world applications. In this paper, we examine cutting-edge 

super-resolution neural networks in-depth using freshly released difficult datasets to test single-

image SR. We present a taxonomy that divides existing techniques into six categories, including 

upsampling, residual, recursive, dense connection, attention-based, and loss function designs. 

This taxonomy is applicable to deep learning-based SR networks. The comprehensive analysis 

shows that in the past few years, the accuracy has increased steadily and rapidly, while the 

complexity of the model and the accessibility of large-scale information have also increased 

accordingly. It has been noted that the present techniques have greatly outperformed the past 

techniques that were indicated as benchmarks. On this basis, this paper will put forward some 

suggestions for future research. 

Keywords: Image Super-resolution (SR), Deep Learning, Convolutional Neural Networks 

(CNNs), Computer Vision, Survey 

1.  Introduction 

Image super-resolution (SR) is a method of producing a raster image with a higher resolution than its 

source. One or more images or frames could be the source. The source for this study is a single raster 

image, and the focus is single-frame super-resolution. It is a significant branch of image processing 

techniques in computer vision. HR images with superior landscape details and constituent objects are 

valuable and necessary for many hardware devices, i.e., large-scale monitors, high-definition televisions 

and cell phones, cameras, etc. In addition, single image super-resolution (SISR) is also useful in other 

domain-specific artificial intelligence (AI) tasks like object detection [1], forensics [2],  medical imaging 

[3], image interpretation in remote sensing [4], and face recognition [5]. 

However, after many years of research, the classic topic of SR is still regarded as a difficult research 

subject in computer vision along with some limitations. First, image SR is an unpredictable inverse 

problem. In particular, there are several options available to get an SR image for the LR image [6]. 

Therefore, reliable prior knowledge is typically needed to define the solution space. Second, the up-

sampling scale factors are mostly limited, constrained by the integer scales (x2, x3, x4, or more), and 

the same image SR of different factors are treated as the independent tasks. However, in practical 

situations, it is common for the image SR to use the user-specified scale factor. Consequently, it provides 

a new direction for solving the generality of the image SR, like the reconstruction in an unconstrained 

space. Meta-SR [7] and LIIF-SR [8] show great performance in targeting this problem. Third, with the 
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upscaling factor rising, the problem complexity and the reconstruction time both rise significantly. A 

higher scaling factor makes it considerably more difficult to recover the details and further results in the 

replication of inaccurate information (or artifacts). Additionally, evaluating the quality of the output SR 

image is not easy since quantitative metrics, such as peak signal to noise ratio (PSNR) and structural 

similarity (SSIM), only objectively reflect the SR image quality without considering the human 

subjective perception. 

The earliest image super-resolution (SR) was basically done using traditional direct image processing 

methods, but with the rapid development of neural networks, it is much more efficient and accurate to 

training complex models. Traditional methods including interpolation-based methods like the nearest 

neighbor, bilinear and bicubic interpolation and reconstruction-based methods, use existing pixels to 

generate new ones so that they cannot offer any additional information for the SR image and the lost 

information cannot be restored. Reconstruction-based methods typically impose specific knowledge 

priors or limitations on an inverse reconstruction problem [9]. Although traditional algorithms have been 

around for decades, deep learning-based models outperform most of them. Therefore, most current 

techniques depend on data-driven deep learning models to rebuild the necessary information for precise 

image SR. Therefore, a subset of deep learning neural networks is designed to automatically learn the 

relationships between input and output directly from the data in such a scenario. This study attempts to 

provide a thorough introduction to the area of SISR with a primary focus on deep learning-based 

techniques. 

Many deep learning-based models are different in many ways. In this paper, our contribution is: (1) 

We summarize the state-of-the-art approaches based on supervised deep learning in recent years from 

three major aspects: upsampling methods, network design architectures, and loss functions. (2) We give 

a full analysis of advantages and disadvantages of each. (3) We offer a comprehensive experimental 

evaluation of models on several public datasets for image SR. (4) We provide some insights and 

suggestions for potential future directions. 

2.  SR model design methodologies 

The state-of-the-art approaches based on supervised deep learning in recent years include two major 

aspects – upsampling frames and network designs. Details are demonstrated in this section. 

2.1.  Upsampling  

Many image SR models are proposed based on the rise of deep learning networks. These models can be 

divided into three frames by the location of upsampling modules in the models, including pre-

upsampling, post-upsampling, and progressive upsampling. These are demonstrated separately as below. 

2.1.1.  Pre-upsampling. It is difficult to learn HR images directly from LR images. It is a direct solution 

to optimize and reconstruct high-quality details through CNN by sampling from traditional methods, 

such as the bicubic interpolation [10]. Dong et al.  proposed the first deep learning-based image SR 

model, super-resolution convolutional neural network (SRCNN) [11], as Fig. 1a shows, which 

outperformed traditional algorithms. The CNN simply must improve the HR image after upsampling 

using the conventional approach, considerably reducing the learning challenge. An interpolated image 

of any size can be used as input, and the effect is comparable to that of a single-scale model. The side 

effects of the up-sampling method are noise amplification, blurring, time, and space cost of calculation 

in high dimensional space.  

2.1.2.  Post-upsampling. To increase computational effectiveness and fully utilise deep learning 

technologies, researchers suggest carrying out as many as procedures in low-dimensional space and then 

perform upsampling operations as Fig. 1b shows. The benefit of this strategy is that the expensive feature 

extraction procedure only operates in low-dimensional space, which greatly reduces the computational 

amount and spatial complexity. Consequently, this framework has emerged as one of the most widely 

used frameworks and has been widely used in recent years. Faster Region-CNN (FSRCNN) [12] and 
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Efficient Sub-pixel Convolutional Network (ESPCN) [13] are deep learning models that first used a 

post-upsampling frame. Certainly, it resulted in a reduction in the number of operations compared to 

SRCNN. However, if there are not enough layers after the upsampling process, the overall performance 

will degrade. Furthermore, they cannot be trained on multiple scales because the input image size is 

different for each upsampling scale [14]. 

2.1.3.  Progressive upsampling. The SR framework for post-upsampling still has certain flaws. First, the 

learning complexity is greatly raised since upsampling is done in only one step, especially for high 

scaling factors (4 or 8). Second, if a requirement for multi-scale SR arises, a totally new SR model is 

required for each scaling factor, which significantly slows down the pace of trials. As shown in Fig. 1c, 

the progressive upsampling architecture was proposed to solve previous difficulties and was initially 

utilized by the Laplacian pyramid SR network (LapSRN) [15]. This system uses a cascade of CNN to 

rebuild HR pictures in a step-by-step manner. At each step, the pictures are upsampled to a higher 

resolution and improved using CNN. This paradigm has been used in other research, such as MS-

LapSRN [16] and progressive SR (ProSR) [17], with comparable findings. 

 

Figure 1. SR model upsampling frames based on deep learning. The output size is represented by the 

cube size. Predefined upsampling is represented by the grey ones, whereas learnable upsampling and 

convolutional layers are represented by the green and blue ones, respectively. Stackable modules are 

represented by the blocks bounded by dashed boxes [18]. 

2.2.  Deep neural network (DNN) design  

Network architecture is one of the most important components of deep learning. Researchers in the SR 

field use a range of network design approaches based on four SR frameworks to construct models. In 

this section, we break down these learning models into basic network design concepts or techniques, 

present them, and examine their benefits and drawbacks one by one. 

2.2.1.  Residual learning. Prior to He et al .'s proposal of ResNet [19], residual learning was extensively 

employed by SR models [20, 21], as seen in Fig. 2a. ResNet was offered as a method of learning 

residuals rather than a thorough mapping. Residual learning employs skip connections to prevent 
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gradients from disappearing, creating extremely deep networks. Its importance was initially proven in 

the context of the picture categorization [19]. Several networks [22] have recently used residual learning 

to improve SR performance. Algorithms in this technique learn residual or high-frequency differences 

from the input to the ground truth [6]. Interestingly, despite the usage of only three layers, the result 

surpasses the non-deep learning techniques outlined earlier. 

Figure 2.  Residual learning block [18]. 

Figure 3. VDSR, DRCN, and DRRN models. The sharing parameters are shown by the same shade of 

yellow or orange [9]. 

Kim et al., motivated by incredibly deep networks' achievements, introduced two models: Very Deep 

Convolutional Network (VDCN) [23] and Deeply-Recursive Convolutional Network (DRCN) [24], 

both of which stack 20 convolutional layers, as illustrated in Fig. 3. (a, b). Tai et al. employed both 

global and local residual connections in their DRRN to achieve greater benefits from residual learning 

[25]. As shown in Fig.3 (c) [23], the identity branch makes use of global residual learning. 

2.2.2.  Recursive learning. Recursive learning, which involves applying the same modules numerous 

times in a recursive pattern, is incorporated into the SR field aiming to learn higher-level traits without 

introducing overpowering parameters, as shown in Fig. 4. The basic purpose of this design is to 

gradually break down the complex SR tasks into a collection of easier to solve task. 

 

Figure 4.  Recursive learning block [18]. 

DRCN, as discussed before, also applies the same smaller convolution nets, embedding net, inference 

net, and reconstruction net, multiple times, as Fig. 5 shows. Each recursion increases the size of the 

receptive field. The inference net produces HR feature maps, while the reconstruction net converts to 

grayscale or color images. Tai et al. also employed both global and local residual connections in their 
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Deep Recursive Residual Network (DRRN) to achieve greater benefits from residual learning [25], as 

Fig.5 shows. 

Figure 5.  A glimpse of DRRN and DRCN architecture. The green blocks are convolution layers 

(generally followed by ReLU). ⨁ represents element-wise addition [6] 

2.2.3.  Dense connections. After the achievement of the DenseNet [26] proposed for image recognition, 

dense CNN layer connections have also been proposed to increase performance in image SR field, as 

Fig. 6 shows. In a 𝑙𝑡ℎ layer dense block (𝑙 ≥ 2), each layer receives its inputs from the feature maps of 

all preceding layers, while the feature maps are fed into the following layers, producing in 𝑙 · (𝑙 − 1)/2 

connections [18]. The major goal of this design is to utilize hierarchical cues accessible as the model 

goes deeper to gain more flexibility and enrich feature representations.  

 

Figure 6. Dense connections [18]. 

The very first network that utilized densely connected networks to image SR is SRDenseNet [27]. It 

learnt the architecture from DenseNet [26], where a layer works on the output of each preceding layer. 

The vanishing gradient problem is avoided, intensive models may be learned, and the training process 

is sped up with this information transfer. Another net that uses this idea is the Residual Dense Network 

(RDN) [28], which combines the concepts of residual skip connections and dense connections. The 

suggested method is resistant to a variety of picture deterioration seen in LR photos and recovers 

significantly upgraded SR images. 

2.2.4.  Attention mechanism. For image SR, the previously stated network architectures assign a 

consistent value to all spatial positions and channels. However, in some cases, it might be more 

beneficial to only focus on a few elements of a specific layer. Attention-based models provide flexibility 

because it recognizes that not all features are equally important for SR. Recent attention-based models 

have demonstrated considerable progress for image SR when combined with deeper networks. 

 

Figure 7. Channel attention block [29]. 

A deep CNN design that was just recently developed is the residual channel attention network (RCAN) 

[29]. Moreover, it has been the deepest model for image SR field. As seen in Fig. 7, it included a channel 

attention mechanism within the residual block. By averaging across a spatial dimension of H*W, the 

inputs of shape H*W*C are squeezed into the channel descriptor, yielding the output shape of 1*1*C. 

Channel descriptors are placed by gating the activation of a sigmoid function and multiplying it element 

by element with the input, allowing the user to adjust the amount of information is sent to the next layer 

for each channel. 
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3.  Loss function 

A loss function offers a guide to measure error for model optimization[18]. Researchers first used the 

pixel-wise loss to evaluate reconstruction quality, but they discover that it is not always the case that 

lower pixel-wise loss matches high human perceptional quality. Therefore, several loss functions (such 

as adversarial loss [30] and content loss [31]) are used to provide more accurate and high-quality results 

by better designs for the reconstruction error. 

In this section, 𝐼
^
 denotes the target HR image and 𝐼 denotes the generated HR image. 

3.1  Pixel loss 

Pixel-wise loss always refers to distance 𝑙1 or distance 𝑙2 (MSE) or a combination of both[32]. 

𝐿𝑝𝑖𝑥𝑒𝑙−𝑙1 (𝐼
^
, 𝐼) =

1

ℎ𝑤𝑐
∑ |𝐼

^

𝑖,𝑗,𝑘 − 𝐼𝑖,𝑗,𝑘|

𝑖,𝑗,𝑘

 

𝐿𝑝𝑖𝑥𝑒𝑙−𝑙2 (𝐼
^
, 𝐼) =

1

ℎ𝑤𝑐
∑(𝐼

^

𝑖,𝑗,𝑘 − 𝐼𝑖,𝑗,𝑘)
2

𝑖,𝑗,𝑘

 

where h, w and c are the height, width, and the number of channels of LR images respectively. [18] 

Practically speaking, the 𝑙1 loss outperforms and converges more than the 𝑙2 loss [14], [22], [33]. These 

measurements only capture information at the local pixel level, hence the generated pictures don’t 

always produce perceptually results, where too smooth images and poor perceptual quality might arise. 

3.2  Content loss 

Content loss is firstly introduced to assess the perceptual quality of images [31], [34]. 

𝐿𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝐼
^
, 𝐼; 𝜑, 𝑙) =

1

ℎ𝑙𝑤𝑙𝑐𝑙
√∑(𝜑(𝑙)

𝑖,𝑗,𝑘(𝐼
^
) − 𝜑(𝑙)

𝑖,𝑗,𝑘
(𝐼))2

𝑖,𝑗,𝑘

 

where ℎ𝑙, 𝑤𝑙 and 𝑐𝑙 indicate the height, width and the number of channels on layer l, resepectively. [18] 

In fact, the leant understanding from more complex and concrete image features from the model 𝜑 is 

evaluated by content loss. In contrast to pixel-wise loss, which forces the output image 𝐼
^
 and the target 

image 𝐼 to match the same pixels, the content loss encourages it to be perceptually like the target image 

𝐼. As a result, it generates visually more perceptible images [35],[36], where the Visual Geometry Group 

(VGG) net [37] and ResNet [19] are widely used pre-trained models. 

3.3  Texture loss 

Texture loss, also known as style reconstruction loss, is incorporated into SR because the consistent 

requirements for the image color, texture and other aspects with the target image. The texture matching 

loss is measured as the 𝑙1 loss between gram matrices generated from deep features [6].The Gram matrix 

is defined as 𝐺(𝑙)𝜖ℝ𝑐𝑙×𝑐𝑙,where 𝐺𝑖,𝑗
(𝑙)

 is the inner product of the feature maps 𝑖 and 𝑗 on layer 𝑙. [18] 

𝐺𝑖,𝑗
(𝑙)(𝐼) = 𝑣𝑒𝑐 (𝜑𝑖

(𝑙)(𝐼)) 𝑣𝑒𝑐 (𝜑𝑗
(𝑙)(𝐼)) 

where 𝑣𝑒𝑐() indicates the operation on vectors and 𝜑𝑖
(𝑙)(𝐼) indicates the i-th channel of the feature maps 

on layer l of image I. [18] Then the texture loss is indicated by: 

𝐿𝑡𝑒𝑥𝑡𝑢𝑟𝑒 (𝐼
^
, 𝐼; 𝜑, 𝑙) =

1

𝑐𝑙
√∑ (𝐺𝑖,𝑗

(𝑙)(𝐼
^
) − 𝐺𝑖,𝑗

(𝑙)
(𝐼))2𝑖,𝑗  [18] 

The EnhanceNet [38] developed by Sajjadi et al. uses texture loss to produce significantly more realistic 

textures and visually better results. Even yet, the process of choosing a suitable patch size is still 
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empirical. Due to the fact that texture statistics are averaging over locations with different textures, too 

little or too large of a patch might create artefacts in textured sections or the entire image.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   

3.4  Adversarial loss 

Due to their strong capacity for learning, GANs [39] have gained a lot of attention in recent years and 

have been given diverse visual tasks. The resulting generator might generate outputs matching the 

distribution of real data with sufficient iterative adversarial training, yet the discriminator is unable to 

tell the difference between produced and real data. Adopting adversarial learning in the context of image 

SR is simple. In that instance, all that is required is to consider the model as a generator and construct 

an additional discriminator to determine whether the HR image was generated. As a result, Ledig et al. 

[30] initially proposed that SRGAN could use the following adversarial loss based on cross entropy: 

𝐿𝑔𝑎𝑛_𝑐𝑒_𝑔 (𝐼
^
; 𝐷) = 𝑙𝑜𝑔⁡𝐷(𝐼

^
) 

𝐿𝑔𝑎𝑛_𝑐𝑒_𝑑 (𝐼
^
, 𝐼𝑠, ; 𝐷) = 𝑙𝑜𝑔𝐷( 𝐼𝑠)𝑙𝑜𝑔⁡(1𝐷 (𝐼

^
)) 

where 𝐿𝑔𝑎𝑛_𝑐𝑒_𝑔 and 𝐿𝑔𝑎𝑛_𝑐𝑒_𝑑 indicates, respectively, the adversarial loss of the generator (i.e., the SR 

model) and the discriminator D (i.e., a binary classifier) and 𝐼𝑠 represents images randomly sampled 

from the ground truths [18].  

From another perspective, images can be interpreted as sampled from a high-dimensional probability 

distribution, and that is a crucial connection between images and statistics. We use the probability 

distribution, which spans the pixels of photographs, to determine whether an image is unmodified. In 

such cases, the Kullback-Leibler Divergence measurement is used to quantify the difference between 

the ground truth distribution and generated distribution. It is supposed that human have learned the 

ground truth image as a natural distribution or a type of prior when the Kullback-Leibler Divergence 

between two distributions of the ground truth image and SR image reaches the minimum 0. Adversarial 

loss is referred to as a component of the perceptual loss in SRGAN [30], and the GAN-based model 

seeks to promote reconstructed images to have a distribution that is similar to that of the ground truth 

images. When dealing with the intricate manifold distributions in natural photographs, adversarial 

learning is helpful. 

4.  Evaluation and discussion 

In this section, we compare the most recent accessible benchmark datasets, including Set5 [40], Set14 

[41], BSD100 [42], Urban100 [43], DIV2K [44], and Manga109 [45]. 

4.1  Experiment setup 

4.1.1.  SR models SRCNN. SRCNN [11] is the initial CNN model for image SR with just traditional 

convolutional layers. A few subsequent initiatives in deep learning-based image SR have been inspired 

by this project, which undoubtedly represents the ground-breaking work in the field. 

DRLN. Densely Residual Laplacian Network (DRLN) [46] is a recently proposed modular and 

hierarchal network. Through its modular architecture and cascading connections, the system is able to 

be exploited across a variety of connections due to its densely connected residual units. There is a 

replication of the structure in every block of the network. 

SCN. This sparse coding network (SCN) mimics LISTA, which is a network that aims to be as 

compact as possible. By combining sparse coding[47] with deep CNNs, it provides a method that yields 

better results. 

VDSR. Very Deep Super-Resolution (VDSR)[23], first proposed in [37], is inspired by a very 

popular deep CNN architecture, VGG net. To accelerate training, every network layer uses fixed-size 

convolutions. Their findings lend credence to the idea that deeper networks can learn generalizable 

representations for multi-scale SR and offer improved contextualization.  
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ESRGAN. Enhanced Super-Resolution Generative Adversarial Network (ESRGAN) [35] is 

extended based on SRGAN[35] by introducing dense blocks. A residual connection between each dense 

block is also created by reusing the outputs of dense blocks as inputs. To enforce residual learning, 

ESRGAN additionally contains a global residual connection. Additionally, the authors use a Relativistic 

GAN, an improved discriminator [48]. 

EDSR. Enhanced Deep Super-Resolution (EDSR) [22] is mainly modified upon the ResNet 

architecture [19] for image recognition. Upon removing Batch Normalization (for each residual block) 

and ReLU activation, they were able to achieve notable improvements (for the residual blocks not 

included in the analysis). 

RCAN. Residual Channel Attention Network (RCAN) [29] provides different pathways for 

information to move between layers for information to pass from the beginning levels towards. It 

effectively illustrates the links between feature maps and enables the model to concentrate on more 

crucial and specific feature maps. 

4.1.2.  Datasets. Set5 [42] is a traditional dataset that simply contains five test images of a baby, bird, 

butterfly, head, and woman. 

Set14 [41] contains more categories than Set5 but only 14 images. 

BSD100 [42] is another traditional dataset with 100 test photos that Martin et al. proposed. The 

dataset contains a variety of images including natural images and object-specific images such as food 

and people. 

Urban100 [43] , a more recent dataset, has the same number of images as BSD100, and is proposed 

by Huang et al[42] but concentrated on man-made architectures. 

DIV2K [44] is a dataset for NTIRE challenge. Approximately 800 images are included in the training 

module and 100 images are included in the testing module.The image quality is of 2K resolution. To 

maintain privacy, the results of all algorithms are only published on validation images, as the test set 

may not be accessed by the general public. 

Manga109 [45] is the most recent improvement for assessing SR methods. A manga volume is 

represented by 109 images in the dataset. Until 2010, these manga were unavailable for commercial use 

due to their professional drawing by Japanese artists. 

4.1.3.  Metrics. The two major methods of evaluating the quality of SR photos are subjective evaluation 

based on human perception and objective evaluation based on quality measures. The two major methods 

of evaluating the quality of SR photos are subjective evaluation based on human perception and 

objective evaluation based on quality measures. Overall, the former measures just variations at the pixel 

level and is more in line with the realistic requirement. However, subjective evaluation has the following 

limitations. (i) Personal preferences might easily influence the outcome of the examination. (ii) The 

evaluation procedure is not automatable and frequently expensive. In comparison, objective evaluation 

is easier to utilise, although the outcomes of various assessment measures may not always be as 

consistent as those of subjective evaluation. Commonly used metrics for evaluating the objective quality 

of super-resolved images are PSNR, SSIM [49]. 
a) Peak Signal-to-Noise Ratio (PSNR)  

A PSNR measurement is one of the most widely used measurements of reconstruction quality. (e.g., 

image compression and image inpainting). A measure of pixel value is defined based on the maximum 

value of a pixel (referred to as L) and the mean squared error between two images in an image SR.The 

PSNR between the reconstruction 𝐼
^
 and the target image 𝐼 with 𝑁 pixels is defined as follows: 

𝑃𝑆𝑁𝑅 = 10 · 𝑙𝑜𝑔10(
𝐿2

1
𝑁
∑ (𝐼(𝑖) − 𝐼

^

(𝑖))2𝑁
𝑖=1

) 

where L equals to 255 in general cases using 8-bit representations. [18] PSNR does not consider human 

perceptions when representing reconstruction quality in real scenes, since it only considers pixel-wise 
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differences. This can often lead to poor representation of reconstruction quality in real scenes. As a 

result of the requirement to compare with literature publications and the absence of a completely correct 

measure of perception, PSNR is still the most used evaluation criteria for SR models. 

Since PSNR only considers pixel-wise differences, it frequently performs poorly when attempting to 

depict the reconstruction quality in real scenes. As people concern more about visual effects, PSNR is 

not sufficient for a full measurement. Despite this, PSNR is still the most popular evaluation criterion 

for SR models because it must be compared to published literature and there aren't any completely 

accurate perceptual metrics. 

b) SSIM index 

SSIM index [49] is suggested for measuring the image quality as a combination of luminance, 

contrast, and structures, considering that the image structure extraction is highly suited for the human 

visual system (HVS) [50]. The luminance 𝜇𝐼 and contrast 𝜎𝐼 are calculated as the mean and standard 

deviation of the image intensity, respectively, for an image I of N pixels. To be more specific, the 

comparisons are carried out in conjunction in the areas of luminance, contrast, and structures as 

𝑆𝑆𝐼𝑀 = [𝑙(𝑋, 𝑋
^
)]𝑎[𝑐(𝑋, 𝑋

^
)]𝛽[𝑠(𝑋, 𝑋

^
)]𝛾  

where 𝑙(𝑋, 𝑋
^
) =

2𝜇𝑋𝜇
𝑋
^+𝐶1

𝜇𝑋
2+𝜇

𝑋
^
2+𝐶1

, 𝑐(𝑋, 𝑋
^
) =

2𝜎𝑋𝜎
𝑋
^+𝐶2

𝜎𝑋
2+𝜎

𝑋
^
2+𝐶2

 and 𝑠𝛼, 𝛽, and 𝛾 are weighting parameters. 𝜇𝑋 and 

𝜎𝑋 denote the mean and standard deviation of 𝑋, respectively. The same as 𝜇
𝑋
^  and 𝜎

𝑋
^ ⁡ of 𝑋

^
.  𝜎

𝑋𝑋
^  is the 

covariance between 𝑋
^

 and 𝑋. 𝐶1, 𝐶2, and 𝐶3 are constants. Additionally, the equation above can be 

simplified whenever 𝛼 = 𝛽 = 𝛾 = 1 and 𝐶3 =
𝐶2

2
 as [49]: 

𝑆𝑆𝐼𝑀 =
(2𝜇𝑋𝜇

𝑋
^+𝐶1)(2𝜎

𝑋𝑋
^+𝐶2)

(𝜇𝑋
2+𝜇

𝑋
^
2+𝐶1)(𝜎𝑋

2+𝜎
𝑋
^
2+𝐶2)

  

In comparison, SSIM [49] reflects more accurate visual quality than PSNR. When a ground truth image 

is available, PSNR and SSIM [49] are typically joint to evaluate the restored image's quality. 

c) Mean opinion score (MOS) 

Mean opinion score (MOS) is a popular subjective image quality assessment technique, in which 

human raters rate the perceptual quality of the testing images. Specifically, the ratings range from 1 

(poor) to 5. (good). Additionally, the arithmetic mean of all ratings is used to calculate the final MOS.  

Although MOS score appears to be a reliable image quality assessment technique, it has certain 

inherent flaws, including rating of criteria as non-linearly perceived scales, biases, and volatility. In 

practice, many image SR models outperform others in terms of perceptual quality while doing badly in 

standard image quality assessment metrics (e.g., PSNR). Considering these circumstances, the MOS 

score provides a reliable method of accurately assessing the perceptual quality of an image. [16, 30, 36, 

38]. 

d) Other Methods  

Compliance with perceived quality is a fundamental problem for common picture quality metrics 

like PSNR. Images consequently become overly flattened and lack texture detail.  

Numerous perceptual loss measures have been suggested to address this problem. More and more 

modern perceptual metrics, such as LPIPS [51] and PieAPP [52], are designed to mimic human 

perception of pictures in contrast to the more traditional ones, which were fixed, such as SSIM [49] and 

multi-scale SSIM [53]. Each of these measures suffered a specific failure. Therefore, there isn't a single 

perceptual metric that consistently performs well in all circumstances and accurately measures image 

quality. Therefore, a special challenge and workshop for perceptually sound image SR techniques 

(PIRM 2018) have been launched to promote development in this field [54]. 
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4.2  Performance 
To summarize the current performance of the image SR models based on deep learning, we offer a range 

of comparisons in Table 1. We use two image objective quality measurements: SSIM and PSNR to 

evaluate performance. The higher the measurement score is, the better the quality of the reconstructed 

image. 

In general, ESRGAN performs better for 4× and both ESRGAN and DRLN perform better for 8× in 

terms of PSNR and SSIM. RCAN is following closely behind as well. However, many factors make it 

impossible to identify one approach to be clearly superior to the others, such as the network complexity, 

the depth of the model, the size of the training patch, the number of feature mappings, and others. Only 

by maintaining consistency across all the factors is a fair comparison feasible. 

Table 1. Performance of State-of-the-Art models for PSNR and SSIM on widely used public datasets 

for 4x and 8x. 

Scale Method SET5 [42] SET14 [43] BSD100 [42] Urban100 [43] Manga109 [45] 

  PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

4x 

SRCNN 30.48 0.8628 27.45 0.7503 26.90 0.7108 24.51 0.7229 25.79 0.7310 

DRLN 32.63 0.9004 28.92 0.7900 27.83 0.7450 26.94 0.8122 31.51 0.9194 

SCN 31.04 0.8775 27.76 0.7623 27.11 0.7196 25.63 0.7469 27.94 0.8268 

VDSR 31.35 0.8838 28.05 0.7679 27.23 0.7256 25.21 0.7519 27.24 0.7953 

ESRGAN 32.58 0.9747 30.24 0.8894 29.26 0.8460 27.89 0.8438 29.74 0.8631 

EDSR 31.03 0.8648 27.87 0.7424 27.02 0.7079 24.82 0.7375 22.47 0.7034 

RCAN 32.61 0.9002 28.88 0.7889 27.75 0.7436 26.81 0.8087 31.22 0.9173 

8x 

SRCNN 25.03 0.6781 23.75 0.6214 24.23 0.5778 20.91 0.5559 22.49 0.7010 

DRLN 27.35 0.7904 25.67 0.6541 25.03 0.6150 23.04 0.6472 25.31 0.8004 

SCN 25.58 0.7068 23.97 0.6023 24.28 0.5696 21.73 0.5563 22.70 0.6898 

VDSR 25.92 0.7238 24.25 0.6179 24.53 0.5826 21.71 0.5709 23.16 0.7249 

ESRGAN 27.58 0.7902 25.46 0.6541 25.14 0.6076 23.31 0.6072 25.49 0.8079 

EDSR 26.93 0.7759 24.92 0.6421 24.82 0.5984 22.52 0.6222 24.70 0.7842 

RCAN 27.29 0.7876 25.33 0.6541 24.98 0.6056 23.05 0.6469 25.28 0.8040 

5.  Conclusion 

SISR is a difficult scientific problem with significant real-world applications. Deep CNN-based 

solutions for image SR have rapidly expanded because of the remarkable success of deep learning 

methodologies. Exciting progress of network designs and learning technology has led to a wide range 

of methodological suggestions. This paper provides a comprehensive inspection of current SR 

techniques based on deep learning. We identify the following trends in the current art through thorough 

quantitative and qualitative comparisons: (a) Spatial details in an image are more accurately reserved 

by reconstruction error-based approaches, whereas GAN-based approaches typically produce visually 

pleasant outputs. (b) For large magnification rates (i.e., 8 or above), the present models typically produce 

less-than-ideal results. (c) the method with the best performance is usually more complicated and in-

depth in calculation than its competitors. (d) The residual learning simplifies the learning process 

through signal decomposition, thus significantly improving the performance. On the whole, we can see 

that SR performance has improved significantly recently, and the complexity of the network has also 

increased. Surprisingly, there are still some problems in the most advanced methods, which restrict their 
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applications in practice, such as inadequate evaluation metrics and high level of model complexity. We 

expect that this paper will promote more work on these pressing issues. 
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