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Abstract: With the accelerating pace of urbanization, traffic flow prediction faces challenges 

in adapting to dynamic environments. Existing studies exhibit significant limitations in 

integrating external factors and extending to multi-scale prediction scenarios. Targeting the 

domain of traffic flow forecasting, this paper focuses on optimizing the Long Short-Term 

Memory (LSTM) network model, with particular attention to the impact of weather 

conditions on prediction accuracy and the performance differences between hourly and daily 

multi-scale forecasting. While mainstream approaches have improved LSTM performance 

through algorithmic optimization (e.g., Particle Swarm Optimization, Bayesian 

Optimization), a systematic solution to the integration of external factors and adaptation to 

different time granularities is still lacking. This study proposes an LSTM architecture that 

incorporates temperature as an embedded parameter, constructing a multi-factor input model 

and designing a dual-scale prediction framework at both the hourly (24-hour window) and 

daily levels (7/30/90-day windows). Using traffic flow and meteorological data from 

Interstate 94 in Minnesota, USA (2012–2018), the research explores the trade-off between 

external factors and time scales in LSTM modeling. The results provide a refined 

optimization path for traffic flow forecasting under complex scenarios. 

Keywords: Short-term traffic flow prediction, time series forecasting, Long Short-Term 

Memory (LSTM), deep learning 

1. Introduction 

With the acceleration of urbanization and the continuous growth of transportation demand, traffic 

congestion has become a common challenge faced by major cities worldwide. Accurate traffic flow 

prediction is of great significance for optimizing traffic management, alleviating congestion, and 

improving road efficiency. In recent years, the application of deep learning models to traffic flow 

forecasting has emerged as a research hotspot. As a neural network model capable of effectively 

handling sequential data, the Long Short-Term Memory (LSTM) network has shown tremendous 

potential in this field. Traffic flow prediction not only supports transportation authorities in 

formulating more scientific traffic control strategies but also provides real-time traffic information 

for travelers, thereby optimizing route planning. However, traffic flow data is characterized by high 

nonlinearity and dynamic variability, making it difficult for traditional forecasting methods to capture 

its complex spatiotemporal patterns. As such, improving the accuracy and robustness of traffic flow 

prediction using deep learning models—particularly LSTM—has become a crucial research focus. 

This paper centers on LSTM-based modeling for traffic flow prediction. Owing to its capacity to 
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capture long-term dependencies, the LSTM model effectively extracts temporal features in traffic 

flow data. We conduct an in-depth exploration of data preprocessing, model construction, and feature 

selection, and validate the LSTM model's effectiveness through empirical experiments. Compared 

with traditional statistical and machine learning methods, LSTM models exhibit significant 

advantages in handling large-scale, high-dimensional traffic data, better addressing the complexities 

and uncertainties inherent in traffic forecasting. Following a structured research framework—

“Problem Identification – Model Improvement – Experimental Validation – Conclusion and 

Summary”—this paper begins by presenting the research background and significance, and outlines 

the current limitations of LSTM models in integrating external factors and adapting to multi-scale 

prediction tasks. A literature review follows, summarizing recent progress and ongoing challenges. 

We then elaborate on the research methodology, including the construction of a dataset combining 

traffic and meteorological data from Minnesota, USA, the design of a multi-scale LSTM model with 

embedded temperature features, and three comparative experiments using hourly (24-hour window) 

and daily (7-day, 30-day, 90-day windows) time scales. The experimental results section highlights 

the limited effect of temperature on predictive accuracy (a mere 4.6% reduction in MSE), as well as 

the notable performance differences across time scales (hourly model MSE = 0.0141, significantly 

outperforming the daily models). Finally, we summarize key findings, emphasize the critical role of 

time granularity in model performance, and propose future research directions including the 

integration of additional external factors and the exploration of hybrid modeling strategies. 

2. Literature review 

The application of Long Short-Term Memory (LSTM) networks in traffic flow prediction has evolved 

alongside the growing demand for responsive modeling in dynamic urban environments. As a result, 

research has shifted from merely validating LSTM’s effectiveness to enhancing the model through 

algorithmic optimization and exploring how to better integrate it into real-world prediction systems. 

Wang et al. [1], using 5-minute interval traffic data from detector station ID 403349 provided by 

California’s PeMS system, applied LSTM for short-term traffic flow prediction and demonstrated its 

capability in capturing temporal dependencies at 5- and 10-minute intervals. By incorporating Particle 

Swarm Optimization (PSO) to fine-tune hyperparameters, their PSO-LSTM model outperformed 

conventional LSTM in terms of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE), 

establishing LSTM’s foundational role in time series-based traffic forecasting. 

Cao et al. [2] analyzed hourly traffic data from Interstate 94 in Minnesota (UCI dataset, 2015–

2018), comparing the performance of LSTM, Gated Recurrent Units (GRU), and Temporal 

Convolutional Networks (TCN) in hourly traffic prediction. The results showed that LSTM had 

superior capability in capturing long-term dependencies compared to GRU, while TCN achieved 

slightly better results at the cost of higher computational complexity. This suggests that LSTM strikes 

a favorable balance between accuracy and efficiency in medium-to-short-term forecasting tasks. 

Subsequent studies have focused on enhancing LSTM performance through various algorithmic 

optimizations. 

Shen et al. [3] used Bayesian optimization to automatically tune hyperparameters for freeway 

traffic forecasting based on 15-minute interval flow data from UK highways (2018 dataset), achieving 

a 6.3% reduction in RMSE. Duan et al. [4] applied Grey Wolf Optimization (GWO) to radar-based 

hourly traffic data (2021–2022) from the Chatiaoling Tunnel in Shaanxi Province, improving model 

adaptability in real-time and reducing energy consumption, demonstrating the benefits of bio-inspired 

algorithms in traffic modeling. 

These studies highlight the significant potential of algorithmic optimization in enhancing the 

generalization ability and practical utility of LSTM models. Jia et al. [5] proposed an innovative 

approach by gridding traffic trajectory data. Using DiDi ride-hailing data collected within Chengdu’s 
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Second Ring Road (November 2022, with sampling intervals of 2–4 seconds), they constructed traffic 

grid clusters via Gaussian Mixture Model (GMM) clustering and used Bi-LSTM to capture 

spatiotemporal correlations. The experimental results revealed that their model achieved a MAE of 

3.0687 during morning rush hours, outperforming traditional multivariate linear regression by 4.14%, 

thereby showcasing LSTM’s potential for spatial dimension expansion. Xue et al. [6] explored a 

traffic flow forecasting method based on Graph Neural Networks (GNNs), emphasizing the 

spatiotemporal characteristics of traffic flow. The study employed Graph Convolutional Networks 

(GCN) to extract spatial features and integrated a time-varying GRU to process road network 

sequences. Using a sequence-to-sequence architecture, they applied the model to traffic flow data 

from METR-LA (Los Angeles) and taxi flow data from Luohu District in Shenzhen. The model 

demonstrated high accuracy and was applicable to short-term (5–30 minutes), mid-term (30–60 

minutes), and long-term (1-hour) predictions, highlighting the potential of data-driven approaches in 

traffic flow forecasting. 

Yang et al. [7] introduced the MCNN-ABiLSTM model, which incorporates Multiscale 

Convolutional Neural Networks and an attention-based Bidirectional LSTM mechanism to enhance 

the temporal and spatial sensitivity of traffic flow series. They used Pearson correlation coefficients 

to quantify spatial dependencies between intersections and employed an improved PSO algorithm to 

label external factors. The experimental results showed that MCNN-ABiLSTM significantly 

outperformed baseline models in terms of RMSE, MAE, and MAPE. Tang et al. [8] and Zhou et al. 

[9] focused on urban traffic flow prediction. Tang proposed a CNN-LSTM-AM model for short-term 

traffic forecasting using PeMS data from California, while Zhou developed an attention-based CNN-

LSTM model to predict taxi flow using trajectory data from Beijing. The datasets used in both studies 

were comprehensive and representative, providing robust support for analyzing the spatiotemporal 

characteristics of urban traffic. 

However, limitations persist in current research: (1) Insufficient integration of external factors 

such as weather and events; (2) Limited exploration of the scalability of multi-scale forecasting, 

particularly in handling different temporal granularities (e.g., hourly vs. daily flow). Building upon 

the above findings, the present study proposes an improved LSTM architecture that incorporates 

weather variables, aiming to predict traffic flow at both the hourly and daily levels with enhanced 

adaptability and precision. 

3. Principle of the LSTM algorithm 

Long Short-Term Memory (LSTM) networks are a special type of Recurrent Neural Network (RNN) 

first proposed by Hochreiter and Schmidhuber [10] in 1997. The core idea of LSTM is to address the 

gradient vanishing problem in training long sequences by introducing a gating mechanism and a cell 

state. The following section presents a detailed explanation of the mathematical model and working 

principles of LSTM. 

Each LSTM unit contains three gates and two state vectors: 

Forget Gate: Controls the extent to which the previous cell state is retained. 

Input Gate: Regulates the amount of new information to be stored. 

Output Gate: Determines how much of the cell state is output. 

Cell State: Acts as the carrier of long-term memory. 

Hidden State: Represents short-term memory. 

The computation of an LSTM unit at time step t can be described by the following equations: 

 ot = σ(Wo ⋅ [ht−1, xt] + bo) (1) 

Where:  

σ denotes the sigmoid activation function, 
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Wf ∈ ℝh×(d+h) denotes the weight matrix of the forget gate., 

bo are their corresponding biases, 

ht−1 is the hidden state from the previous time step, 

xt is the input at the current time step. 

Input gate computation: 

 it = σ(Wi ∙ [ht−1, xt] + bi) (2) 

 C̃t = tanh⁡(Wc[ht−1] + bc) (3) 

Cell state update: 

 Ct = ft⨀Ct−1 + it⨀C̃t (4) 

Output gate computation: 

 ot = ⁡σ(Wo · [ht−1, xt] +⁡bo) (5) 

 ht = ot⨀tanh⁡(Ct) (6) 

 

Figure 1: Graphical explanation of the cell state of LSTM 

In Figure 1,it shows the graphical explanation of the cell state of LSTM.In this study, the LSTM 

model utilizes 128 neurons in each hidden layer, which directly influences the model’s capacity to 

learn temporal patterns in traffic flow. A two-layer LSTM architecture is adopted to extract 

hierarchical features, enhancing the model’s ability to capture complex traffic dynamics. During 

training, 20% of the neuron outputs are randomly dropped (dropout) to effectively prevent overfitting 

on traffic data. 

The model construction process is as follows: 

Step 1: Data preparation. 

Step 2: Dataset partitioning. 

Step 3: Model training. The LSTM model is trained using the training dataset. 

Step 4: Model testing. The trained LSTM model is applied to the test dataset to assess its 

performance. 

Step 5: Model evaluation. 

4. Results 

The data used in this study originate from hourly westbound traffic flow records on Interstate 94 in 

the Minneapolis–Saint Paul metropolitan area, Minnesota [11], spanning a total of seven years from 
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2012 to 2018. Each entry contains hourly traffic volume and corresponding temperature information. 

By summing hourly volumes for each day, a new dataset of daily traffic volumes was constructed. 

The following experimental cases were designed: 

Case 1. Hourly Prediction 

LSTM was applied to the entire dataset of hourly traffic flow and temperature from 2012 to 2018, 

with a timestep of 24—i.e., the previous 24 hours were used to predict the next hour. The dataset was 

split into 98% training, 2% testing, and 20% validation (note: the validation proportion is relative to 

training data). 

Case 2. Hourly + Temperature Prediction 

This setup was identical to Case 1, except temperature was explicitly included as a feature 

alongside traffic flow data. The timestep was again set to 24, and the data split remained the same. 

Case 3. Daily Prediction 

This experiment used daily aggregated traffic flow data. Three sub-cases were conducted based on 

different timesteps: Case 3a: Using the past 7 days to predict the next day. Case 3b: Using the past 

30 days to predict the next day. Case 3c: Using the past 90 days to predict the next day. To better 

highlight differences in performance, the dataset was divided into 90% training, 10% testing, and 20% 

validation (relative to training). 

For all experiments, the Stochastic Gradient Descent (SGD) optimizer was selected for its ability 

to enhance generalization through mini-batch randomness, maintain stable gradient updates, and 

adapt efficiently to dynamic data. The Mean Squared Error (MSE) was chosen as the loss function 

for its suitability in penalizing large deviations, its differentiability for gradient-based optimization, 

and its ability to directly quantify overall deviation between predicted and actual values. The 

difference between predicted and actual values was used as the primary evaluation metric. 

The following figures illustrate the experimental outcomes: 

 

Figure 2: Hourly prediction in Case1 

In Figure 2, a consistent pattern of five peaks and two valleys in hourly traffic volume per week is 

observed. Each "peak" corresponds to either the morning or evening rush hours, while the valleys 

reflect lower nighttime traffic. This five-high-two-low pattern aligns with reduced traffic volumes on 

weekends compared to weekdays. 
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Figure 3: Hourly prediction in Case2 considering temperature 

In Figure3, when temperature is included as an input feature, the prediction performance shows 

little improvement compared to Case 1. This suggests that temperature has minimal impact on 

LSTM’s performance in this context. 

 

Figure 4: Daily prediction based on a 7-day period in Case3a 

 

Figure 5: Daily prediction based on a 30-day period in Case3b 
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Figure 6: Daily prediction based on a 90-day period in Case3b 

Figure 4 Figure 5 and Figure 6 illustrate daily predictions using 7-day, 30-day, and 90-day 

timesteps, respectively. Compared with hourly predictions, daily forecasts are less accurate. However, 

the general five-high-two-low weekly pattern remains. Comparison of Case 1 (hourly) and Case 3 

(daily) under different time granularities shows that model performance varies significantly with 

timestep size and data aggregation level. The following Table 1 summarizes the MSE values for each 

experimental setup: 

Table 1: MSE of all cases 

 MSE 

Case1 0.01408546 

Case2 0.01343374 

Case3a 0.50603939 

Case3b 0.22317 

Case3c 0.35447066 

5. Discussion 

In the task of traffic flow prediction, incorporating temperature as an external factor did not lead to 

significant improvements in model performance. Comparing Case 1 (using only traffic flow data) and 

Case 2 (including temperature), the latter achieved a marginally better MSE—0.01343374 compared 

to 0.01408546 in Case 1. This slight improvement suggests that temperature has a limited effect on 

LSTM-based traffic prediction. One possible reason is that traffic flow itself already captures the key 

dynamic patterns, rendering the additional temperature feature redundant or weakly correlated in this 

context. 

Case 1 adopted an hourly prediction granularity, while Case 3 relied on daily data. This change in 

temporal resolution had a substantial impact on model performance. In Case 3, which aimed to predict 

the next day’s traffic flow using the past 7, 30, or 90 days, the MSE values were significantly higher: 

Case 3a (7-day window): 0.50603939; Case 3b (30-day window): 0.22317; Case 3c (90-day window): 

0.35447066. These results suggest that longer input windows may make it harder for the model to 

capture short-term fluctuations in traffic, increasing prediction uncertainty and reducing accuracy. 

Furthermore, the use of daily data reduces the number of training samples, which can negatively 

affect the model's learning and generalization capabilities. 
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Notable differences were also observed within the Case 3 sub-experiments. The length of the 

temporal window played a key role in determining what kind of features the model was able to learn. 

Shorter windows (e.g., 7 days) were better suited for capturing abrupt shifts and short-term dynamics, 

whereas longer windows smoothed out the data too much, potentially masking seasonal or weekly 

variations. For instance, a flood event that occurred on day 0 of the test set in Case 3a significantly 

affected prediction accuracy, highlighting the model’s sensitivity to extreme weather events. Longer 

windows (e.g., 90 days) tend to average out such anomalies, reducing the model’s responsiveness to 

sudden changes in traffic conditions. 

6. Conclusion 

This study addresses traffic flow prediction by proposing a multi-scale LSTM architecture that 

incorporates external temperature data, aiming to enhance prediction accuracy across different time 

granularities. Using real-world data from Interstate 94 in Minnesota (2012–2018), three sets of 

comparative experiments were conducted at the hourly level (24-hour window) and daily level (7-

day, 30-day, and 90-day windows). The results indicate that: Including temperature (Case 2) yields 

only a 4.6% reduction in MSE compared to using traffic flow alone (Case 1), suggesting limited 

predictive contribution of temperature in this context. Hourly predictions (MSE = 0.0141) 

consistently outperform daily predictions (e.g., Case 3a MSE = 0.5060). Longer input windows (e.g., 

90 days) tend to smooth out fluctuations, leading to poorer detection of seasonal patterns. Shorter 

input windows (e.g., 7 days) are more responsive to sudden events, such as natural disasters, but may 

suffer from overfitting or noise sensitivity. This research highlights the critical role of temporal 

granularity in LSTM performance for traffic forecasting. The findings offer valuable theoretical 

insights and practical guidance for building more refined and adaptive predictive models under 

complex traffic scenarios. 
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