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Abstract. Object detection algorithms based on deep learning usually have good results in 

terms of speed and accuracy on GPU- based computing platforms. However, as this kind of 

algorithm is not perfectly supported for CPU-based Unmanned aerial vehicle(UAV), the object 

detection algorithm usually used  in  UAV  has the problem of slow detection speed, which 

will lead to traffic accidents, traffic congestion, and other problems. To solve this problem, we 

proposed an object detection algorithm based on YOLOv5. Firstly, aiming at the problem of 

light- weight model architecture, mobilenetv3 was added to YOLOv5 to replace the original 

backbone. Secondly, in order to maintain a high detection accuracy, omni-dimensional 

dynamic convolution was added in the feature fusion part of the network as a replacement for 

stander convolution. Through the architecture analysis, the proposed algorithm solves the 

problem in the UAV traffic monitoring system. 

Keywords: mobilenetv3, omni-dimensional dynamic convolution, traffic monitoring system, 

UAV, YOLO 

1.  Introduction 

Due to the transportation sector's fast development in recent years, cars have been the primary tool of 

modern transportation, and car sales and ownership are also increasing yearly. According to 

hedges\&companies, the world now has a staggering 14.46 billion cars on roads by 2022 [1]. Cars 

greatly facilitate people's travel efficiency and improve production efficiency in People's Daily life. 

However, with the increase in the frequency of people using cars, it is accompanied by many problems. 

These problems are traffic management problems, such as traffic jams, frequent traffic accidents, etc 

[2]. Therefore, solving the negative impact of cars through more efficient traffic management is a 

significant problem facing society. 

In order to solve the problems in traffic management, the traditional traffic management system 

mainly uses fixed cameras. It is laborious to perform management tasks, but this is time-consuming. 

Recently, state-of-the-art research has proposed an intelligent traffic management system composed of 

Unmanned Aerial Vehicles (UAVs) as an alternative to traditional traffic management systems [3]. 

This UAV traffic management system is not limited by the traditional fixed camera coverage is small, 

the need to install a stable power supply and network on the highway, etc. It realizes intelligent and 

flexible traffic management. The basis of this traffic monitoring system is the object detection 

algorithm based on deep learning. Currently, the most advanced object detection algorithms are 

divided into single-stage and two-stage target detection algorithms [4]. The advantage of the single-
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stage algorithm lies in the realization of the end-to-end model, which is usually several times faster 

than the two-stage image detection speed. Among the single-stage algorithms, the YOLO series 

algorithm [5-7] is representative of the single-stage algorithm due to its ultra-fast detection speed and 

detection accuracy no less than that of the two-stage algorithm. Although YOLO has achieved a fast 

detection speed on most GPU-based computing platforms, it cannot achieve a good detection speed on 

CPU-based UAVs due to its design and optimization based on GPU platform [8]. However, since most 

of the UAVs used in the UAV traffic management system use CPU to detect vehicles on the road, 

there is still the most advanced target detection algorithm cannot achieve the satisfactory effect of both 

accuracy and speed [9-10], which will make the UAV traffic management system respond slowly and 

cause danger to road traffic. 

In this paper, in order to improve the object detection algorithm's inference speed applied on CPU-

based UAV, we propose an improved object detection algorithm based on YOLO [5-7]. Firstly, 

mobilenetv3 [11-13]} is added to the algorithm to replace the backbone, which can significantly 

improve the detection speed. Then we use Omni-dimensional dynamic convolution [14] to replace the 

stander convolution in the last layer of the YOLO head to increase the feature extraction capability. 

The rest of this paper is organized as follows. In section 2, related works are introduced. In section 

3, the proposed architecture is realized. Section 4, there is the analysis of the proposed architecture. 

The conclusion is in section 5. 

2.  Related works 

2.1.  YOLOv5 

YOLOv5 is the most advanced object detection network, and it is the product of integration and 

innovation on yolov3 [7], and yolov4 [15]. The second, YOLOv5 has achieved good results in 

PASCAL VOC [16] and Common Objects in Context (COCO) [17] object detection task, so this paper 

adopts YOLOv5 object detection network for UAVs object detection algorithm. 

There are four editions of YOLOv5’s official implementations: YOLOv5s, YOLOv5m, YOLOv51, 

and YOLOv5x. The three algorithms YOLOv5m, YOLOv51, and YOLOv5x are the results of 

deepening and broadening on the basis of YOLOv5s, which has the network with the lowest feature 

map width and the most minor depth in the YOLOv5 series. 

YOLOv5 network structure is divided into input, Backbone, Neck, and Prediction. YOLOv5 

enhanced Mosaic data in the data input part. Backbone mainly adopts the Focus structure and CSP 

(Cross Stage Partial network) structure. The FPN+PAN (Path Aggregation Network) structure was 

added to the Neck. In Prediction, Generalized Intersection over Union (GIoU) loss is used to construct 

the loss function of the border anchor box in place of Complete Intersection ratio over Union (CIoU) 

loss. Weighted Non-Maximum Suppression (NMS) operation is used by YOLOv5 in the target 

detection backward propagation to filter numerous target anchor boxes. 

2.2.  Light-weight network architecture 

Since Alexnet was proposed in 2012 by A. Krizhevsky [18], the Convolutional neural network has 

been widely used in tasks of object detection, image classification, and instance segmentation. 

However, as the performance requirements of the model are becoming higher in practical application, 

the demand for light-weight models is also increasing, and many light-weight models have been 

proposed accordingly. 

For example, light-weight models SqueezeNet [19], shufflenet [20], and Xception were proposed in 

2016 [21],2017 and 2017, respectively. These models were designed to solve two problems in the 

model application. The first is the problem   of model storage; hundreds of layers of networks contain 

a large number of weight parameters, and it is very difficult to save a large number of weight 

parameters to the satisfied device’s random access memory (RAM). The second problem is the 

reasoning speed of the model. In practical application, it is often millisecond level. In order to meet the 
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practical application schema, the processor performance should be improved, or the computation 

amount should be reduced. 

Mobilenet is state of the art light-weight network. Mobilenet is available in versions v1, v2, and v3. 

Mobilenetv1 divides traditional convolution into deep convolution and 1 × 1 point convolution 

through depth separable calculation [11-13]. In addition, width multiplication and resolution 

multiplication are introduced to control the number of model parameters, reducing the number of 

network parameters and improving CPU devices’ computing speed. Mobilenetv2 implements the 

inverted residual structure to solve the problem of disappearing gradients during feature extraction. In 

Mobilenetv3, the inversed residual block, linear bottleneck, and squeeze-and-excitation (SE) attention 

mechanism from Mobilenetv2 are combined with the depth-separable convolution from Mobilenetv1. 

In addition, to search the network’s setup and parameters, a neural architecture search (NAS) is 

performed. In order to decrease the amount of computation and obtain the effects of less calculation 

and greater accuracy, the swish activation function is enhanced to h-swish. 

2.3.  Detection precision improvement of convolution neural network 

A deep convolution neural network is used to extract image features for image recognition. 

Convolution kernel is usually used to extract features of a small receptive field of the feature map. 

However, the information on each regional feature has different influences on whether the detection 

network can correctly recognize the image. Therefore, the attention mechanism, as a method to 

improve the detection accuracy, simplify the model, and accelerate the calculation [22], has been used 

in many computer vision tasks in recent years. Since Squeeze and Excitation Networks [23] published 

on CVPR in 2018, it is a representative application of attention mechanisms in computer vision. A lot 

of follow-up work based on this work has been generated. For example, Selective Kernel Networks 

[24], CBAM: Convolutional Block Attention Module  etc [25]. The focus of these efforts is on adding 

attention mechanisms to feature maps in the feature extraction process. In addition, dynamic 

convolution is also widely used in computer vision as an efficient method to add attention to the 

convolution kernel in the process of feature extraction [26]. Omni-dimensional dynamic (ODConv) 

[14] was proposed in 2022. As an enhancement of dynamic convolution, Omni-dimensional dynamic 

convolution (ODConv) can be regarded as the continuation of dynamic convolution, which extends the 

dynamic characteristics in one dimension of dynamic convolution, and considers the dynamics in the 

spatial domain, input channel, output channel, and other dimensions, so it is called omni-dimensional 

dynamic convolution. ODConv uses a multi-dimensional attention mechanism to learn complementary 

attention along the four dimensions of the kernel space through the parallel strategy. It can be easily 

embedded into existing CNN networks. Experiments on ImageNet classification and COCO detection 

tasks verify the superiority of the proposed ODConv: it can improve the performance of large models 

and light-weight models [14]. Due to its improved feature extraction ability, ODConv with one 

convolution kernel can still achieve comparable or even better performance than the existing multi-

kernel dynamic convolution. 

3.  Improved model architecture 

Based on the YOLOv5 object detection algorithm, this paper replaced the original backbone network 

by modifying the backbone network framework and using the feature extraction network of 

mobilenetv3. Furthermore, omni-dimensional dynamic convolution is used to introduce an attention 

mechanism in the detection layer, thus improving the precision of target detection. The mobilenetv3 

backbone network is used to implement the migration of the algorithm to the mobile terminal and 

improve the algorithm’s target detection speed on the UAV device. As shown in Fig. 1, the proposed 

model is described in the following. 
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3.1.  Input end 

3.1.1.  Mosaic data augmentation. In the input end of the network, the Mosaic data augmentation method was 

used to process on data set. In this method, four images are randomly cropped and then spliced into one 

image as training data. This policy’s advantage is that the images’ background is enriched, and the 

batch size is increased when the four images are used together. In the process of batch normalization, 

four images are calculated. Therefore, this method does not rely much on the computing resources of 

the training data set. 

 

Figure 1. Light-weight YOLO. 

3.1.2.  Adaptive picture scaling. Various pictures have different lengths and widths when using 

standard target detection techniques. The conventional approach is to feed the original picture to the 

detection network after evenly scaling it to a standard size. 

This technique involves adding a few light black borders to the source image. The amount of the 

black edge at both ends will vary after scaling and filling since many of the real images used with this 

approach have varied aspect ratios. However, if there is more filling, information redundancy will 

occur, which will slow down reasoning. 

3.2.  Backbone 

The proposed model uses the bottleneck structure from mobilenetv3 Fig.2 to replace the original 

backbone Darknet53 in YOLOv5. 

 

Figure 2. Mobiklenet V3 block. 

To reduce the number of parameters in the network structure, mobilenet’s main structure is adopted 

as the core convolutional layer of the backbone network. In comparison to the YOLOv5 backbone, it 

not only keeps a more reliable feature extraction while also drastically shrinking the size of the model 

and improving the ease of deployment in the mobile terminal. It also has a shallower network than the 

YOLOv5 network, which may better extract regionally specific fine characteristics and enhance 

detection performance on busy roadways. Therefore, mobilenetv3 replaces YOLOv5’s backbone as it 

will spend less to extract features. Fig. 2 shows the Architecture of mobilenetv3. In the proposed 

model, we used a total of 9 bottleneck structures to replace the original backbone. 
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3.2.1.  bottleneck structure. The bottleneck structure is com- posed of the convolution layer and the 

residual edge part. The central part first raises the dimension through 1×1 point-wise convolution to 

expand the number of channels in the input feature layer. Then, feature extraction is carried out 

through a 3×3 depth-wise convolution. The proportion occupied by each channel number is obtained 

by a global average pooling and two full connections of the obtained feature layer. Then the channel 

weight is adjusted to apply the attention mechanism. Finally, the dimension is reduced by 1×1 

convolution, resulting in output. In the residual edge part, the input and output are directly connected 

to accomplish. 

3.2.2.  activation function. Mobilenetv3 employs the conventional ReLU function as the activation 

function in the top three layers of the network when applying the activation function. In the remaining 

six bottleneck structures, it employs the more efficient and effective h-swish activation function, 

reducing computation for the entire structure and enhancing performance. 

3.3.  Neck 

The neck’s purpose is to improve feature fusion and network feature extraction. PANet is adopted as 

the neck of this algorithm. Utilizing downsampling and upsampling techniques, PANet, which is 

based on feature pyramid networks (FPN), fuses feature maps of various scales at the same time, 

enhancing the features of the output layer after mapping and fusion and enhancing the network’s 

capacity to express both shallow feature information and deep semantic information.  

To improve the ability of feature detection, we introduce the attention mechanism on the last layer 

by adding ODConv in PANet to achieve better feature extraction. The ODConv can be defined as 

𝑦 = (𝛼𝑤1 ⊙ 𝛼𝑓1 ⊙ 𝛼𝑐1 ⊙ 𝛼𝑠1 ⊙ 𝑊1 + ⋯ + 𝛼𝑤𝑖 ⊙ 𝛼𝑓𝑖 ⊙ 𝛼𝑐𝑖 ⊙ 𝛼𝑠𝑖 ⊙ 𝑊𝑖) ∗ 𝑥                                (1)  

In equation (1), where  𝑥 ∈ 𝑅ℎ×𝑤×𝑐𝑖𝑛and 𝑦 ∈ 𝑅ℎ×𝑤×𝑐𝑜𝑢𝑡 represent the input features and out features. 

wi is the ith convolution kernel. The four attention parameters αwi, αfi, αci and αsi, represent the attention 

scalars of the convolution kernel, the space dimension of the convolution kernel, the input channel 

dimension and the output channel dimension respectively. 

3.4.  Prediction part 

In the proposed model, CIOU_Loss is set as the loss function of the bounding box as equation (2) 

𝐶𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
𝐷2

2

𝐷𝐶
2 − 𝛼𝑣 (2) 

where α shows in equation (2) is an equilibrium parameter and does not participate in gradient 

calculation. The expression of α is as 

𝛼 =
𝑣

(1 − 𝐼𝑜𝑈) + 𝑣
(3) 

The calculation process of parameter v is as 

𝑣 =
4

𝜋2 (𝑎𝑟𝑐𝑡𝑎𝑛
𝑤𝑔𝑡

ℎ𝑔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛
𝑤

ℎ
)2 (4)

where hgt and wgt in equation (4) are the height and width of the ground- truth, respectively. h and w 
are the height and width of the prediction result, respectively. 

4.  Model analysis 

The main aim of this section is to demonstrate and analyze the performance between YOLOv5 and the 

proposed architecture on CPU-based UAV devices. In this section, we analyzed our proposed 

architecture from two aspects of algorithm’s time complexity and space complexity, respectively. In 

addition, detection result in other experiment is analyzed. 
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4.1.  Time complexity and space complexity 

The time complexity of the proposed model was evaluated by floating point operations (FLOPs). The 

mathematical definition of FLOPs can be described as following 

𝐹𝐿𝑂𝑃𝑠 = [(𝐶𝑖 × 𝑘𝑤 × 𝑘ℎ) + (𝐶𝑖 × 𝑘𝑤 × 𝑘ℎ − 1) + 1] × 𝐶0 × 𝑊 × 𝐻 (5) 

In the equation (5), where the value in middle brackets represents the amount of computation 

(multiplication and addition) required by the convolution operation to calculate a point in the feature 

map; 𝐶𝑖 × 𝑘𝑤 × 𝑘ℎ  represents the amount of multiplication in a convolution operation. (𝐶𝑖 × 𝑘𝑤 ×
𝑘ℎ − 1) represents the amount of addition in a convolution operation. +1 represents bias. W and H 

represent the length and width of the feature map, respectively. 𝐶𝑜 × 𝑊 × 𝐻 represents the number of 

all elements of the feature map. 

The space complexity of the proposed model was evaluated by the number of model parameters. 

𝑝𝑎𝑟𝑎𝑚𝑠 = 𝐶𝑜 × (𝑘𝑤 × 𝑘ℎ × 𝐶𝑖 + 1)   (5) 

Where 𝐶𝑜  denotes the number of output channels, 𝐶𝑖  denotes the number of input channels, 𝑘𝑤 

denotes the width of the convolution kernel, and 𝑘ℎdenotes the height of the convolution kernel. The 

value in (𝑘𝑤 × 𝑘ℎ × 𝐶𝑖 + 1) parentheses represent the number of weights in a convolution kernel, +1 

represents bias, parentheses represent the number of parameters in a convolution kernel, and C0 

indicates that there are 0 convolution cores in this layer. 

Table 1. FLOPs. 

YOLOv5  light-weight YOLO  

Name GFOLPs parameters Name GFLOPs parameters 

Conv 1.47 73984 conv bn hswish 0.1 464 

Conv 3.80 156928 MobileNet Block 0.03 612 

C3 8.10 295424 MobileNet Block 0.11 3864 

Conv 3.79 1118208 MobileNet Block 0.07 5416 

C3 14.37 1180672 MobileNet Block 0.06 13736 

Conv 3.78 6433792 MobileNet Block 0.09 55340 

C3 20.62 4720640 MobileNet Block 0.09 21486 

Conv 3.78 9971712 MobileNet Block 0.05 28644 

C3 7.99 2624512 MobileNet Block 0.06 91848 

SPPF 2.10 525312 MobileNet Block 0.08 91848 

Conv 0.42 0.00 MobileNet Block 0.10 294096 

Upsample 0.00 0.00 MobileNet Block 0.10 294096 

Concat 0.00 2757632 Conv 0.02 25088 

C3 8.84 131584 Upsample 0.00 0.00 

Conv 0.42 0.00 Concat 0.00 0.00 

Upsample 0.00 0.00 C3 0.99 308736 

Concat 0.00 690688 Conv 0.11 33024 

C3 8.87 590336 Upsample 0.00 0.00 

Conv 1.89 0.00 Concat 0.00 0.00 

Concat 0.00 2495488 C3 1.00 77568 

C3 8.87 2360320 Conv 0.47 147712 

Conv 1.89 0.00 Concat 0.00 0.00 

Concat 0.00 9971712 C3 0.95 296448 

C3 7.99 457725 ODConv 0.00 603353 

Prediction 1.46 46563709 Concat 0.00 0.00 

Total 109.6 73984 C3 0.95 1182720 

/ /  Prediction 0.22 67425 

/ /  Total 6.0 3607016 
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The table 1 shows the FLOPs and parameters in each layer of the two network models when the 

input image size is the size. It is shown that the FLOPs of YOLOv5 are about 19 times that of the 

proposed architecture, which proves that the proposed model has a massive advantage over the 

original algorithm in time complexity. And it is also shown that the number of parameters of 

YOLOv5 is about 13 times that of the proposed model, which proves that the proposed model has a 

huge advantage over the original algorithm in space complexity. 

4.2.  Model precision analysis 

In order to analyze the impact of the mobilenet replacement backbone on detection accuracy, we 

analyzed it by referring to the model implemented in this paper [27]. In the [27], mobilenetv1 was used 

to replace the backbone of the proposed model, which is established based on YOLOv4. The experi- 

ments and tests were carried out on the VOC data set. The experimental results show that compared 

with the YOLOv4 algorithm, the map50 of the proposed model decreases from 92.98% to 86.48% 

when using map50 as the test criteria. 

This is a negligible drop in accuracy. Moreover, in order to analyze the precision impact of 

ODConv implemented in our proposed model, we refer to the experiment in paper [14]. In the 

experiment of this paper [14], mobilenetV2 and FasterRcnn were used as the baseline of the 

experiment. The test result of this experiment shows that When using an ODConv to replace a stander 

convolution at the last layer of the backbone, the map50 test accuracy was increased from 57.2% to 

60.7%. 

5.  Conclusion 

In this paper, there are two improvements have been achieved. The first is the light-weight 

construction of the model, which reduces the time complexity and space complexity of the model by 

19 times and 13 times respectively, compared with the original model. Theoretically, the algorithm 

inference speed can be 19 times faster for the UAV equipment running based on the CPU. Secondly, by 

adding an attention mechanism to the model, the detection precision of the proposed architecture will 

remain relatively high when the proposed architecture has been light-weighted at the same time. By 

achieving these two goals of architecture improvement, the object detection performance of CPU-

based UAV is greatly improved, while the accuracy of the model is not significantly reduced. 
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