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Abstract. Click-through rate (CTR) prediction plays a critical role in personalized
recommendation systems. Accurate CTR prediction not only enhances user experience and
satisfaction but also brings substantial commercial value to online service platforms such as e-
commerce. A key challenge in CTR prediction is the precise representation of user interest
preferences. Existing methods mostly focus on item-level user interest modeling, neglecting the
complex relationships between fine-grained attributes (such as category, brand, etc.), making it
difficult to effectively address the noise problem caused by item attribute coupling and user
interest drifting. Furthermore, identifying and distinguishing hard negative samples from noisy
ones remains a critical issue that needs to be resolved. To address these challenges, we propose
a fine-grained attribute decoupling and interest denoising network. This network effectively
mitigates noise caused by attribute coupling and interest drifting through joint modeling of
fine-grained attribute decoupling and interest denoising. Specifically, the network decouples
item attributes to model user interests with a fine-grained attribute-aware interest denoising
module, which handles noise caused by attribute coupling and user interest drifting. To further
optimize user interest representation, we design a contrastive interest optimization module
based on hard sample enhancement, ensuring a more accurate and comprehensive user interest
representation. We conduct experiments on three real-world datasets and compare the proposed
method with baseline approaches, validating its effectiveness.

Keywords: click-through rate prediction, interest denoising, attribute decoupling.

1. Introduction

Click-through rate (CTR) prediction plays a critical role in personalized recommendation systems.
Accurate CTR prediction not only enhances user experience and satisfaction[1], but also brings
significant commercial value to online advertising and e-commerce platforms. In recent years, with the
development of deep learning technologies, feature interaction-based CTR prediction models[2-3] have
achieved preliminary success through efficient feature combinations. However, these models struggle
to effectively model users' historical behavior features and dynamic interest preferences; therefore,
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sequence-based CTR prediction methods[4-8] have gradually become a research hotspot. By deeply
analyzing user behavior sequences, these methods can more accurately capture users' behavior patterns
and interest preferences.

Current sequence modeling research can be roughly divided into three categories: time window-
based modeling, user behavior attribute-based modeling, and multi-behavior sequence-based modeling.
Time window-based modeling includes short-term sequences[7-8], long-term sequences[5-6], and
session sequences[4,9]; behavior attribute-based modeling consists of two types, which are one
utilizing item attributes[10] and the other incorporating behavior details (such as dwell time, clicked
images, view comments, etc.)[11]; while multi-behavior sequence-based modeling captures user
behavior patterns through mixed sequences[12] or by splitting independent sequences based on
behavior type[13-14]. Some studies also combine explicit and implicit feedback[15] to enhance
modeling capabilities. Despite the progress made by these methods, they often only capture item-level
related interests and fail to fully consider the complex interactions between fine-grained attributes of
items. In fact, users' attention to different attributes of an item (such as brand, price, rating, etc.) when
deciding whether to interact with the item can vary due to personal preferences and contextual changes.
In this case, models struggle to accurately capture users' true interest in these fine-grained attributes.
Therefore, current models need to better decouple these fine-grained attributes and effectively capture
user preferences for each attribute.

User behavior sequences often contain complex noise interference, which makes it difficult to
accurately represent users' true interest preferences. First, noise labels (such as misclicks[16]) in the
samples constituting the user behavior sequence can lead to inaccurate mappings between behavior and
interest. Second, user interests may drift over time[8], causing further noise. Among these noisy
samples, some are semantically similar to positive samples but are labeled as negative samples, making
it easy for models to mistakenly identify them as users' true interests[17]. In model training, sample
quality is crucial for enhancing the model's ability to distinguish similar samples and avoid local
optima. Therefore, if these noise issues are not properly addressed, the accuracy and generalization
ability of CTR prediction will be significantly reduced. To address these noise issues, Bian et al.[18]
attempt to correct noise in implicit feedback using explicit feedback, but explicit feedback data is often
too sparse[19], and assuming that explicit feedback is entirely correct is unreasonable. Lin[20] and
Zhao[21] reduce the impact of sample noise in implicit feedback through sample reweighting or sample
selection methods, but they do not consider the impact of the temporal variation in user interests. Zhou
et al.[7] focus on the problem of interest drifting, attempting to capture the temporal changes in user
interests. However, they do not address the noise problem caused by fine-grained attribute coupling,
and thus user interest representation may still be affected. Therefore, reasonably modeling user
behavior sequences and effectively denoising them becomes a key challenge for improving CTR
prediction performance[22].

To address these challenges, we propose the Fine-grained Attribute Decoupling and Interest
Denoising Network (FADIDN). This network effectively alleviates noise issues caused by item
attribute coupling and interest drifting through joint modeling of fine-grained attribute decoupling and
interest denoising. Specifically, we design an interest denoising module based on fine-grained attribute
awareness. By decoupling item attributes, we personalize the modeling of user interests and handle
noise issues in the fine-grained attribute dimension caused by attribute coupling and interest drifting.
To further optimize user interest representation, we also design a contrastive interest optimization
module based on hard sample enhancement. This module constructs high-quality positive-negative
sample pairs through hard negative sample mining strategies and uses contrastive learning methods to
optimize the denoised user interest representation, achieving more precise personalized modeling. In
summary, our main contributions are as follows:
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(1)We propose the Fine-grained Attribute Decoupling and Interest Denoising Network, which is the
first to filter noise from user interests at the fine-grained attribute dimension. This effectively alleviates
noise problems caused by attribute coupling and dynamic changes in user interests within user behavior
data.

(2)We design a contrastive interest optimization strategy based on hard sample enhancement. By
mining hard negative samples, we construct high-quality positive-negative sample pairs, enhancing the
model's ability to distinguish similar samples, further optimizing denoised user interest representation
and improving the accuracy of personalized modeling.

(3)We conduct systematic experimental evaluations on three real-world datasets. The experimental
results show that FADIDN improves recommendation performance by 12.31%, 16.91%, and 9.95%
compared to existing baseline models. This significant advantage demonstrates the effectiveness and
practicality of the network in complex scenarios.

2. Method

In this section, we will describe FADIDN in detail. As shown in Figure 1(a), FADIDN first maps
users, target items, and user behavior sequences based on item fine-grained attributes into vector
representations through the feature embedding layer. Then, the fine-grained attribute-aware interest
denoising module models the user's personalized interests based on the fine-grained attribute sequences
of the items and addresses the noise caused by attribute coupling and user interest drifting. Next, the
contrastive interest optimization module based on hard sample enhancement constructs high-quality
positive and negative sample pairs using a hard negative sample mining strategy, and further optimizes
the denoised user interest representations through contrastive learning. This enables the model to more
accurately capture user interests and ultimately achieve click-through rate prediction.
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Figure 1: Fine-grained Attribute Decoupling and Interest Denoising Network Framework.

2.1. Problem Definition

First, we define some symbols used in this paper. We use bold uppercase letters (e.g.,  ) to
represent matrices, bold lowercase letters (e.g.,  ) to represent vectors, non-bold letters (e.g.,  )
to represent scalars, and Greek letters (e.g.,  ) to represent parameters. Suppose we have a set of users
   and items   , where    represents any user and    represents any item. We
comprehensively consider    attributes of user    (such as user ID, gender, age, etc.), and model two
types of behavior sequences: the click sequence    and the unclick sequence   . For each item   , we
model    fine-grained attributes    (e.g., item ID, category, brand, etc.). Based on these fine-grained
attributes   , we construct fine-grained attribute click sequences    and unclick sequences   . The
objective of FADIDN is to learn a function    to predict the click
probability of user    on the target item   . Here,    represents the fine-grained attribute-
aware interest denoising module, which aims to model the user's personalized interest and effectively
address the noise caused by attribute coupling and interest drifting;    represents the contrastive
interest optimization module based on hard sample enhancement, which constructs high-quality
positive and negative sample pairs through hard negative sample mining, enhances the relationships
between fine-grained attributes, and further optimizes the denoised user interest representations using
contrastive learning, improving the accuracy of the user interest representation;   represents the
parameters of FADIDN; and    takes values between 0 and 1.

2.2. Embedding Layers

For each user    in the user set    and each item    in the item set   , we construct vector
representations following [18]. The representation of user    consists of multiple concatenated
features:   , where    is the number of user attributes and    is
the embedding dimension. For item   ,its representation under fine-grained attribute    is denoted as  

 ,and the target item’s representation is   . The click sequence of the user on fine-grained attribute
   is represented as  , and the unclick sequence is 

 , where    is the maximum sequence length. Additionally, to model
the positional information of items in the behavior sequence, we take the click sequence    as an
example and describe the composition of the positional features in detail. First, we calculate the time
difference between the timestamp of each item in the sequence and the timestamp of the target item [1],
and then construct the corresponding position sequence   . Next, through the
embedding layer, we obtain its feature embedding   . Finally, we add the positional feature
embedding    and the fine-grained attribute n click sequence feature embedding   , obtaining the
feature embedding of the fine-grained attribute click sequence with fused positional information  

 . Similarly, the embedding representation of the unclick sequence for fine-grained
attribute    is   .

2.3. Fine-Grained Attribute-Aware Interest Denoising Module

User interests are influenced by fine-grained item attributes (e.g., category, brand, price, etc.).
However, existing click-through rate prediction models[4,8] typically capture user interests at the item
level and fail to fully consider the coupling relationships between item attributes and the noise issues
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arising from this. Therefore, to accurately extract user interest preferences, we have designed a fine-
grained attribute-aware interest denoising module. This module models the user's personalized interests
and handles the noise caused by attribute coupling and interest drifting by using an improved
Transformer model, based on the fine-grained attribute sequence of the items. Next, we take    as an
example to describe the specific implementation of this module in detail.

The contribution of fine-grained item attributes varies dynamically in different scenarios. For
example, a user's recent interests are reflected in specific items (e.g., item ID), while long-term interests
are more evident in preferences for attributes like "category" or "brand." To address this, we introduce a
gating network (i.e., a multi-layer perceptron) to dynamically weight each fine-grained attribute click
sequence, capturing the user's behavior patterns on fine-grained attributes and adaptively modeling the
user's long-term and short-term interests. The weight    for each fine-grained attribute click sequence
can be calculated using the following gating network:

  

Here,   , and    represents the output of the   -th layer.    and    are the
learnable weight matrix and bias vector of the layer, respectively, and   denotes the   
activation function. The dynamic weight    obtained through the gating network is element-wise
multiplied (Hadamard product) with    to obtain the weighted fine-grained attribute click sequence.
This weighted sequence is then input into the multi-head attention mechanism, where it is combined
with the user profile    to model the personalized user interests. Each attention head    models
the user’s attention patterns over the same fine-grained attribute click sequence across different
subspaces:

  

The query vector    represents all features except for the user's historical behavior, the
key vector , and the value vector both originate from the same fine-
grained attribute sequence. The personalized interest representation   for the user in each fine-grained
attribute click sequence is obtained by concatenating the outputs of each attention head as follows:

  

Here,    represents the number of heads in the multi-head attention mechanism, and    is the
linear transformation matrix.

User behavior sequences are often influenced by interest drifting, one significant cause of which is
that users exhibit different levels of interest in fine-grained attributes of items across different time
periods. This variation in interest can lead to short-term fluctuations in user click behavior. To address
this, we introduce a multi-head target attention mechanism, which aligns the target item with the fine-
grained attribute click sequence and combines timestamp information and relative position information
from the sequence to filter out noise unrelated to the user's interests. The denoised interest
representation    for the user in the click sequence is obtained after processing the output of the multi-
head target attention through a point-wise feed-forward neural network (FFN):
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Here,    can be obtained in a similar manner to Equation (2), but in this case,  
 represents the feature embedding vector of the target item,   , and   , where  

  is the linear transformation matrix. Similarly, the denoised interest representation    for the
unclick behavior sequence is obtained in the same manner.

2.4. Hard Sample Enhancement-Based Contrastive Interest Optimization Module

To enhance the relationships between fine-grained attributes and further optimize the representation
of user interests by mining latent interest information in the click behavior sequence, we design a
contrastive learning strategy based on hard negative sample mining for the sample-enhanced interest
optimization module. This module constructs high-quality positive-negative sample pairs and utilizes
contrastive learning to strengthen the relationships between fine-grained attributes, thereby optimizing
the denoised user interest representation to enhance its comprehensiveness.

During the positive-negative sample construction process, we use the denoised interest
representation    output in Section 3.3 as the anchor point, and select positive and negative samples
from both the click sequence and the unclick sequence. To enhance the relationships between fine-
grained attributes and ensure the consistency of    with the selected items in terms of semantic
features, the embeddings of all items are represented by the concatenated features of each attribute.
Specifically, we select the top-k items from the click sequence whose semantic similarity with    is
greater than   , and construct the positive sample set   . Here,    is a
hyperparameter, and the similarity between    and    is calculated using thefollowing formula:

 

 

Here,   . Then, we construct the positive sample pair set  
  by pairing the item embeddings from    with   .

In terms of negative sample selection, unlike the previous method of random sampling from the
unclick sequence[23], we adopt a strategy combining hard negative sample mining[24] and random
negative sampling. Using hard negative sample mining to construct negative samples not only helps
FADIDN identify those hard-to-classify negative samples, but also prevents overfitting on simple
negative samples, promoting more discriminative feature learning. Specifically, we select the top-q
items from the unclick sequence that are similar to   , forming the hard negative sample set  

  in a manner similar to the positive sample selection. Then, we pair the item
embeddings from    with   , constructing the hard negative sample pair set  

 . Next, to increase the diversity of negative samples, we also
employ a random negative sampling strategy, randomly selecting negative samples from the unclick
sequence, and pairing their embeddings with    to form the random negative sample pair set   .
Finally, we take the union of    and    to obtain the final negative sample pair set   :

  

Based on the positive and negative sample pairs constructed above, we use the InfoNCE contrastive
loss function    to optimize the feature representation learning of FADIDN:
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Here,    and   ,   is the temperature parameter, and    is the number of negative
samples. In the click-through rate prediction task for attribute decoupling and interest denoising, the
standard cross-entropy loss    is used:

  

Here,    and    represent the true label and predicted value of the    -th sample, respectively.
Finally, we jointly optimize the InfoNCE contrastive loss and the cross-entropy loss. The joint
optimization objective is defined as   :

  

Here,   is a hyperparameter.

3. Experiments

In this section, we validate the effectiveness of the FADIDN network through experiments on
different datasets and compare it with current state-of-the-art methods. The experimental design and
discussion will focus on the following four questions:

RQ1:How does FADIDN perform compared to other CTR prediction models?
RQ2:What is the impact of each module in FADIDN on the model's performance?
RQ3:How does the parameter setting of FADIDN affect the model's performance?
RQ4:Does FADIDN effectively implement denoising?

3.1. Experimental Setups

Dataset: We evaluate the proposed FADIDN on three publicly available datasets with different
experimental settings. The Amazon Dataset[25] includes product reviews and related metadata from the
Amazon website, covering multiple product categories. In this experiment, we selected the Beauty and
Electronics categories. We treat the product ratings as indicators of user interest, where ratings of 4 and
5 are considered as user clicks, and ratings of 0-3 are considered as unclick behaviors. Another dataset
used is the MovieLens Dataset[26], which includes user ratings and preferences for movies. Similarly,
the user ratings for movies are treated as interest indicators, with ratings of 4 and 5 representing clicks,
and ratings of 0-3 representing unclicks. The statistical information for each dataset is shown in Table
1.

Table 1 Statistical information of the dataset

Dataset User Goods Categories Samples
Beauty. 22363 12101 220 198602
Eletronics. 192403 63001 801 1689188
Movielens. 138493 27278 21 20000263

Comparison Methods: To demonstrate the effectiveness of the proposed FADIDN in sequence
modeling and interest denoising, we compare FADIDN with state-of-the-art click-through rate
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prediction models.
DIN[8]: DIN adaptively adjusts user behavior feature weights using an attention mechanism.
DIEN[7]: DIEN learns the temporal dependencies of the sequence with GRU to capture changes in

user interest.
DSIN[4]: DSIN divides user historical behaviors into sessions and uses Transformer to learn the

behavior sequences within each session.
AutoInt[27]: AutoInt utilizes a multi-head attention mechanism to construct higher-order features,

enhancing the accuracy of CTR prediction.
TFNet[28]: TFNet introduces operational tensors and uses multi-layer matrices to capture

interactions between features, revealing semantic space differences.
FRNET[22]: FRNET leverages an attention mechanism and multi-layer perceptrons to learn feature

relationships and contextual information, enhancing data representation capabilities.
DFN[14]: DFN introduces explicit negative feedback sequences and uses a basic attention

mechanism to denoise implicit negative feedback sequences.
DUMN[18]: DUMN denoises user interests by modeling four types of user behavior sequences and

incorporating user profiles to mine long-term interests.
RLNF[21]: RLNF uses reinforcement learning to select effective negative samples.
AutoDenoise[20]: AutoDenoise utilizes deep reinforcement learning and a two-stage optimization

strategy to automatically select noise-free data subsets.
Evaluation Metrics: We use AUC (Area Under the ROC Curve)[29] and RelaImpr[30] as

performance evaluation metrics. Among them, RelaImpr measures the performance improvement of the
model relative to the baseline model, typically expressed as a percentage. The calculation formula is as
follows:

  

Parameter Settings: FADIDN is built based on the PyTorch framework, with a maximum sequence
length of 50 and an embedding layer output dimension of 16. The gating network consists of two fully
connected layers (256 and 16 dimensions), and both the point-wise feed-forward network and the
prediction layer are also two fully connected layers (256 and 128 dimensions). The number of heads in
the multi-head attention mechanism is set to 2. During the training phase, the learning rate is set to
0.01, and the Adam optimizer is used. All hyperparameters are determined through grid search, and
early stopping is employed to prevent overfitting.

3.2. Comparative Experiments

Table 2 The AUC and RelaImpr performance of FADIDN compared to the baseline models on three
datasets, with the best results highlighted in bold.

Datesets
Model

Beauty.
AUC RelaImpr

Eletronics.
AUC RelaImpr

MovieLens.
AUC RelaImpr

DIN 0.8127 0% 0.7962 0% 0.7926 0%
DIEN 0.8152 0.80% 0.7995 1.14% 0.7939 0.44%
DSIN 0.8176 1.57% 0.8014 1.76% 0.7968 1.44%
AutoInt 0.8213 2.75% 0.8014 1.76% 0.7992 2.26%

RelaImpr = (
AUC(measured model)−0.5

AUC(base model)−0.5 − 1) × 100%
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TFNet 0.8241 3.65% 0.8073 3.75% 0.8036 3.76%
FRNet 0.8314 5.98% 0.8164 6.82% 0.8053 4.34%
DFN 0.8242 3.68% 0.8081 4.02% 0.8037 3.79%
DUMN 0.8263 4.35% 0.8123 5.44% 0.8042 3.96%
RLNF+DSIN 0.8352 7.20% 0.8213 8.47% 0.8086 5.47%
RLNF+FRNet 0.8342 6.88% 0.8201 8.07% 0.8073 5.02%
AutoDenoise+DSIN 0.8402 9.79% 0.8321 12.12% 0.8125 6.80%
AutoDenoise+FRNet 0.8357 7.36% 0.8292 11.14% 0.8103 6.05%
FADIDN 0.8512 12.31% 0.8463 16.91% 0.8217 9.95%

As shown in Table 2, RLNF+DSIN and AutoDenoise+DSIN are combined models of denoising
components with sequence modeling models, while RLNF+FRNet and AutoDenoise+FRNet are
combined models of denoising components with non-sequence modeling models. We compared
FADIDN with 12 other models on three datasets and drew the following conclusions:

(1)The average results from five random experiments indicate that FADIDN outperforms the current
state-of-the-art models on all datasets, validating its effectiveness. Compared to the baseline models,
FADIDN improved performance by 12.31%, 16.9%, and 9.95% on the Amazon (Beauty), Amazon
(Electronics), and MovieLens datasets, respectively. Notably, on the Amazon dataset, where there are
rich attribute categories, FADIDN’s advantage is more pronounced, demonstrating its ability to handle
complex data.

(2)The combination of sequence modeling and denoising components achieves better performance,
indicating that the presence of noise indeed affects the model's ability to capture user interests.
FADIDN models personalized user interests through sequence modeling while simultaneously
addressing the noise issues introduced by fine-grained attribute coupling. Its performance significantly
outperforms models that rely solely on sequence modeling or feature interaction representations.

3.3. Ablation Experiments

To study the effectiveness of the components in the FADIDN network, we conducted extensive
ablation studies on three datasets and the results are shown in Figure 2:

Figure 2: Ablation study results.

Impact of the Fine-Grained Attribute-Aware Interest Denoising Module: To validate the
effectiveness of the components in this module, we designed three variants: FADIDN-G, FADIDN-M,
and FADIDN-T, and evaluated them on the Amazon (Beauty), Amazon (Electronics), and MovieLens
datasets. The results are shown in Figure 2.
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FADIDN-G removes the gating network, leading to a performance drop of 1.46%, 1.61%, and 1.7%,
demonstrating the critical role of the gating network in capturing user behavior patterns and adaptively
modeling both short-term and long-term interests.

FADIDN-M removes the multi-head target attention mechanism, resulting in a performance drop of
0.89%, 0.94%, and 0.52%, highlighting the key role of this mechanism in addressing the noise problem
caused by interest drifting.

FADIDN-T removes the improved Transformer, with a performance drop of 1.93%, 1.82%, and
1.91%, underscoring its ability to capture personalized user interest preferences and handle noise
effectively.

Impact of the Sample-Enhanced Interest Optimization Module: To validate the effectiveness of the
components in this module, we designed two variants: FADIDN-A and FADIDN-CL, and evaluated
them on the Amazon (Beauty), Amazon (Electronics), and MovieLens datasets. The results are shown
in Figure 2.

FADIDN-A removes the existing positive-negative sample pair construction strategy, replacing it
with positive sample pairs formed by pairing the target item with items in the click sequence, and
negative sample pairs randomly sampled from the unclick sequence within the same batch. The
performance drops by 2.14%, 2.35%, and 1.42%, validating the importance of constructing high-
quality sample pairs for model performance.

FADIDN-CL removes the contrastive learning algorithm, resulting in a performance drop of 2.76%,
2.91%, and 1.34%, demonstrating the significant role of this algorithm in optimizing sample similarity
and discriminability.

3.4. Parameter Experiments

This section investigates the impact of various hyperparameters on the performance of FADIDN.
The adjustment of these hyperparameters has a direct effect on the model's prediction accuracy and
generalization ability.

Network Depth: The network depth includes the number of gating network layers and the number of
feed-forward neural network (FNN) layers, which are used to capture feature relationships at different
levels. As shown in Table 3, the optimal choice for both the number of gating network layers and the
FNN layers is 2 layers, demonstrating consistency in the design of the deep structure.

Table 3 The AUC performance of neural networks with different depths on three datasets.

Layers Network Beauty. Eletronics. Movielens.

1
Gate natework 0.8316 0.8302 0.8052
FNN 0.8325 0.8310 0.8075

2
Gate natework 0.8391 0.8325 0.8102
FNN 0.8412 0.8364 0.8138

3
Gate natework 0.8331 0.8314 0.8063
FNN 0.8379 0.8330 0.8125

Number of Heads in the Multi-Head Attention Mechanism: In the fine-grained attribute-aware
interest denoising module, the number of heads in the multi-head attention mechanism of the
Transformer determines the model's ability to capture feature information across multiple subspaces.
Increasing the number of heads allows for more comprehensive learning of sequence features, but it
also increases computational resources and the risk of overfitting. Therefore, an appropriate number of
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heads needs to be chosen for feature learning. As shown in Table 4, the optimal performance is
achieved when the number of heads is set to 4.

Table 4 The AUC performance of multi-head attention with different numbers of heads on three
datasets.

heads Beauty. Eletronics. MovieLens.
2 0.8321 0.8316 0.8098
4 0.8423 0.8352 0.8115
8 0.8387 0.8347 0.8106
16 0.8326 0.8292 0.8083

Number of Item Attributes: Increasing the number of item attributes can provide richer information
but also leads to higher computational costs and the curse of dimensionality. In e-commerce scenarios,
where there are hundreds of attribute features, calculating all of them would be too costly. A reasonable
number of attributes can effectively enhance the model's understanding of features, thereby improving
prediction performance. As shown in Figure 3, when the number of attributes is between 0 and 6, the
model's performance improves significantly. However, between 6 and 10 attributes, the performance
improvement is marginal, while the storage requirements increase substantially. Therefore, we set the
number of attributes to 7.

Figure 3 The number of attributes N.

Joint Loss Weight   : In the joint optimization loss function formula,   represents the weight of the
InfoNCE contrastive loss. As shown in Figure 4(a), different datasets require different values for   : in
the Beauty dataset, the model optimizes feature representation more effectively when   ; in the
Electronics dataset, the optimal value of   is 0.34. In high-noise scenarios, such as the MovieLens
dataset, the model performs better when   .

InfoNCE Contrastive Loss Parameter: The temperature parameter   controls the distribution range
of the similarity between positive and negative samples in the contrastive learning loss. As shown in
Figure 4(b), the optimal value of   differs for different datasets. In the Beauty dataset, when   ,
the model achieves the best performance by balancing the optimization of positive and negative sample
similarities. When   , the distinction between positive and negative samples decreases, leading
to weakened model performance. Similarly, in the Electronics dataset, the optimal   value is 0.26, and
in the MovieLens dataset, the optimal   value is 0.31. When   exceeds these thresholds, model
performance declines.

The Number of Negative Samples K: K determines the strength of optimization between positive
and negative sample pairs. As shown in Figure 4(c), in the Amazon (Beauty) dataset, when K=256, the
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number of negative samples is suitable, effectively balancing optimization performance and
computational cost. In the Amazon (Electronics) dataset, the optimal value of K is 512, while in the
MovieLens dataset, K=1024 is optimal. As K increases, overfitting occurs, and computational cost
significantly increases, affecting model performance.

  

Figure 4 Analysis of the loss function hyperparameters.

3.5. Visualization Analysis

In this section, we use visualization analysis to investigate the handling capabilities of FADIDN in
the following three key aspects:

User Interest Noise: In Figure 5, we present the interest representation for the same user’s click and
unclick behaviors. The noise is effectively filtered in both the click and unclick behavior
representations, allowing the user’s interest preferences to be more clearly presented.

Figure 5 Visualization representation of user interest and noise.

User Long-Term and Short-Term Interests: In Figure 6, we visualize the long-term interest
representation and short-term interest representation. It is clear that the model distinguishes the user’s
long-term and short-term interests. Compared to the distribution of the user’s short-term interests, the
distribution of long-term interests is more scattered.
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Figure 6 Visualization of user long-term and short-term interests.

Personalized Weight Representations for Different Users: In Figure 7, we visualize the vector
representations of several users. It is evident that, before personalization weighting, the vector
representations of users are very similar. After applying personalized weighting, the vector
representations of users show more distinct differences, which helps the model further understand each
user’s unique interests and behavior patterns.

Figure 7 Visualization of personalized weight distributions across different users.

4. Conclusion

FADIDN, through its fine-grained attribute-decoupled user interest modeling approach, enhances the
model's ability to capture user interest in the fine-grained attributes of items, overcoming the limitation
of existing click-through rate prediction methods that focus only on item-level user interests. Moreover,
FADIDN effectively addresses the noise problem caused by attribute coupling and user interest drifting,
improving click prediction performance through both denoising and enhancement. Future research
could further explore how to optimize the model on larger-scale datasets, improving its computational
efficiency and generalization ability.
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