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Abstract. In the context of significant renewable energy integration, power load forecasting
is viewed as an essential task in energy management and power system operation and
scheduling. In an effort to enhance the accuracy and precision of power load prediction, a
predictive technique based on Long Short-Term Memory (LSTM) networks enhanced by the
quantum-behaved particle swarm optimization (QPSO) is applied to ultra-short-term power
load prediction in this paper. Initially, normalization is used to preprocess power load data
before it is divided into training and testing datasets. Subsequently, global optimization of
the LSTM’s essential hyperparameters and network architecture is conducted via QPSO,
resulting in the development of a QPSO-LSTM forecasting model. Subsequently, the
forecasting model is evaluated by employing the coefficient of determination (R²), mean
absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error
(RMSE) as performance metrics. Finally, comparative experiments are conducted between
the proposed model and traditional neural network models. The findings demonstrate that
the QPSO-LSTM model offers enhanced forecasting precision and optimal fitting
performance.

Keywords: Short-term power load forecasting, Long Short-Term Memory neural network,
Quantum-behaved Particle Swarm Optimization algorithm

1. Introduction

Load forecasting is regarded as a fundamental element in ensuring the secure and stable operation
of power systems and optimizing resource allocation for the operation and dispatch of modern
power systems. Particularly in the context of high penetration of renewables and the intricate
interaction of diverse loads, precise forecasting serves as a critical enabler for addressing
uncertainties and enhancing grid resilience and economic efficiency [1-2]. According to the length
of the forecasting horizon, the power load forecasting problem is generally categorized into long-
term and short-term predictions. Short-term load forecasting, ranging from hourly to weekly scales,
is considered a critical component of various stages in power grid operation, which impacts the
efficient implementation of system arranging and production methodologies [3]. Ultra-short-term
load forecasting, which is used for online monitoring of power equipment's operational status,
typically provides load variations for the next few minutes to several hours. With the advancement
of market-oriented reforms, the balance between electricity supply and demand is increasingly
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dependent on real-time trading mechanisms, making the accuracy of short-term load forecasting
critically important. High-accuracy load forecasting not only reduces grid operation costs and
improves economic efficiency but also effectively responds to potential load variations and
unforeseen events, guaranteeing the safe and reliable operation of the entire system [4]. The
expansion of smart grid infrastructure and digital upgrades significantly enhance the data collection
frequency and accuracy in dispatching systems, which in turn provides a massive and high-quality
data base for analyzing load characteristics and implementing deep learning methods.

Conventional load forecasting primarily relies on statistical analytic techniques, such as time
series analysis [5], multiple linear regression [6], and exponential smoothing [7]. These strategies are
based on the correlation between energy consumption and factors such as historical usage and
external conditions, and regression models are fitted to the data to forecast future load. However,
considering the advancement of contemporary power systems, the integration of diverse loads, high
proportions of renewable energy, and the inherent randomness of renewables have made load
variations increasingly complex and highly nonlinear, rendering traditional forecasting methods
unable to achieve satisfactory performance [8]. The emergence of next-generation artificial
intelligence technologies has facilitated the extensive use of data-driven artificial intelligence
approaches in load forecasting for power systems. Data analysis techniques based on conventional
machine learning and deep learning, with their strong ability to extract complex abstract features,
have exhibited superior accuracy in anticipating outcomes within the domain of load prediction. In
contemporary research, the utilization of artificial intelligence in power load prediction is
extensively explored by numerous scholars. Literature [9] proposes a statistical method based on
annual cycle pattern decomposition, which significantly improves the forecasting accuracy of the
autoregressive integrated moving average (ARIMA) model and the Exponential Smoothing State
Space (ETS) model by encoding monthly electricity demand series into standardized patterns.
Literature [10] proposes a hybrid statistical framework based on the Generalized Additive Model
(GAM) and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model. By
integrating exogenous variables with time series characteristics, it effectively captures the
seasonality and annual growth rate of load, demonstrating excellent performance in long-term
forecasting. Literature [11] employs a hybrid model framework combining the Prophet time series
model with Bayesian optimization (BO) and the eXtreme Gradient Boosting (XGBoost) model,
significantly reducing the overfitting risk inside intricate nonlinear environments. Literature [12]
constructs a hybrid model combining Convolutional Neural Network (CNN), Long Short-Term
Memory (LSTM), and Transformer-Gaussian Process (GP) through a multivariate data fusion
strategy, substantially enhancing the precision of power load forecasting. Literature [13] develops a
Temporal Convolutional Network (TCN) model optimized by the Improved Salp Swarm Algorithm
(ISSA) to meet the complexity and high-precision demands of short-term urban power load
forecasting. The integration of the Error Auxiliary Model (EAM) within the ISSA-TCN+EAM
prediction framework improves the model's capacity to identify the nonlinear characteristics of
power load, while error correction strategies are employed to further improve forecasting stability.
However, certain limitations are still encountered in existing research. Many approaches tend to
suffer from overfitting or underfitting when handling data diversity. Meanwhile, high computational
complexity and intensive resource requirements restrict their practical application in power grid
scheduling, potentially reducing operational efficiency.

Literature [14] designs a hybrid model that integrates CNN, LSTM, and a multi-modal attention
mechanism, enhancing global feature modeling through a multi-head self-attention mechanism.
Literature [15] proposes a short-term forecasting model that combines principal component analysis
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with LSTM neural networks, and verifies that the model can capture the dynamic characteristics of
time series data. However, the precision and reliability of LSTM forecasting models are highly
dependent on preset parameters. Most of the existing LSTM models rely on empirically determined
parameters, resulting in limited generalization ability and insufficient prediction accuracy and
stability. Improper optimization can not only impact the overall performance of the model but also
increase the training time of the network.

The quantum-behaved particle swarm optimization (QPSO) algorithm is employed to enhance the
LSTM network, aiming to address the insufficient predictive precision and stability of individual
LSTM models. A QPSO-LSTM forecasting model is constructed and applied to ultra-short-term
power load prediction. Through the integration of quantum behavior modeling, probability
distribution mechanisms, and dynamic parameter adjustment, the QPSO algorithm enhances both
global and local search capabilities, thereby significantly improving predictive precision and
reliability of the model. Initially, the power load data is normalized through preprocessing.
Subsequently, the key hyperparameters of LSTM are globally optimized by QPSO to construct the
QPSO-LSTM forecasting model. Finally, the predictive efficacy of the LSTM, PSO-LSTM, and
QPSO-LSTM models is compared and validated through case studies, demonstrating the efficacy of
QPSO optimization in enhancing the forecasting precision and fitting capability of LSTM.

2. Prediction model based on QPSO-LSTM

2.1. LSTM neural network

LSTM is a specialized type of Recurrent Neural Network (RNN) designed for the analysis of
sequential and time series data, specifically to mitigate the vanishing and exploding gradient issues
prevalent in conventional RNNs. LSTM analyzes the temporal features of data through three key
gating units: the forget gate, the input gate, and the output gate [16-17]. The basic unit of the
network is shown in Figure 1. In the hidden layer, a memory unit is added in LSTM, consisting of a

"cell state" vector, represented as .  is employed to store historical information and transfer the
current state information to the next time step, granting the model long-term memory ability, which
shows good performance in processing long time-series data.
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Figure 1: Basic unit of LSTM network

The mathematical expressions corresponding to the internal structure of the LSTM unit are
shown in equations (1) to (6):

(1)

(2)

(3)

(4)

(5)

(6)

The forget gate regulates the degree to which historical information in the cell state is eliminated.

In equation (1),  denotes the output of the forget gate at time t. The previous hidden state  and

the current input vector  are fed into the sigmoid activation function ; a value of  close to 0
indicates that the corresponding information is forgotten, while a value close to 1 means it is
retained.

The input vector  in the input gate is transformed by both the sigmoid and tanh functions, and
these transformations together decide the retained vector in the state memory unit. In equation (2),

 represents the output of the input gate after being processed by the sigmoid function. In equation

(3), the candidate cell state  is the output of the input gate after being processed by the tanh

function.  multiplies with  to decide which information is discarded or preserved.
The output of the forget gate is multiplied by the previous cell state, and then the product of the

input gate and the candidate cell state is added to obtain the new cell state. The state update rule is

shown in equation (4). In equation (5),  denotes the output of the output gate. In equation (6), 
is the current hidden state, which serves as the input for the next time step.

 represents the bias terms corresponding to different gate units.  represents the weight
matrices associated with different gate units.

2.2. QPSO algorithm

Particle Swarm Optimization (PSO) is an optimization algorithm that emulates the motion of
particles in the search space, achieving global optimization through the sharing of individual
experience and group information. The current state of each particle is determined by its previous
state, its own best state, and the group’s best state. Particles update their states through individual
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optimization and group evolution, continuously learning to improve their states [18]. The particle
update equation is presented as follows:

(7)

(8)

 denotes the velocity vector of the i-th particle at the k-th iteration;  represents the

position vector of the i-th particle at the same iteration;  is the historical best position of the

i-th particle; and  is the global best position among all particles.  denotes the inertia

weight, which controls the influence of the particle’s previous velocity.  are the acceleration

coefficient, and  are uniformly distributed random numbers in the range [0,1] at the k-th
iteration, used to introduce randomness and augment the stochastic algorithmic search capabilities.

Equation (8) updates the particle's position using the velocity vector , yielding a new position at
the (k+1)-th iteration.

Nevertheless, the absence of random positional changes often results in a lack of diversity among
particles, making the algorithm susceptible to local optima in high-dimensional search spaces.

Specifically, the performance of PSO is highly determined by key parameters like  and .An
excessively large  may lead to over-exploration, while a small value may result in insufficient
exploitation, making parameter tuning challenging. At later iterations, the particles converge toward

, resulting in a substantial decrease in swarm diversity. There is no effective diversity-
preserving mechanism within the velocity update formula.

QPSO utilizes quantum states to represent particle motion, and optimization is conducted by
emulating particle dynamics in quantum space. In quantum space, the position update of each
particle no longer uses the classic velocity and position update formulas but instead uses a quantum
transition probability distribution to update the particle’s position. This method exhibits greater
randomness, which effectively overcomes the limitations of conventional PSO. Particles are allowed
to appear in regions far from the current optimum with a certain probability, thereby maintaining
population diversity. Moreover, the dependency on parameters is minimized in QPSO, as the search
scope is adaptively regulated through the quantum potential well mechanism.

The optimization steps of QPSO are described by the expressions in Equations (9) to (11):

(9)

Equation (9) defines the mean best position of all particles as .  represents the swarm size,

and  denotes the individual optimal location of the i-th particle at the k-th iteration.

(10)
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Equation (10) defines the position update equation for the particles. Where a value equally

distributed within the interval (0, 1), and  represents the global optimal location of the i-th
particle during the k-th iteration.

(11)

Equation (11) defines the iterative equation for particle movement. Where  represents a
randomly changing number in the range (0, 1), used to determine the direction of the particle’s
position update.  represents the contraction-expansion coefficient, which affects the algorithm's

convergence rate. When  > 1, the particle searches globally; when  < 1, it converges toward 
.

2.3. QPSO-LSTM prediction algorithm

The performance of LSTM in load forecasting is highly dependent on the configuration of
hyperparameters, including the quantity of hidden layer nodes, learning rate, and number of
iterations. Conventional empirical parameter adjustment is inefficient and tends to result in
convergence to local optima. Therefore, a hyperparameter optimization strategy based on QPSO is
employed to optimize the key parameters of the LSTM model. In comparison with PSO, the
quantum-inspired position updating mechanism of QPSO improves population diversity and
eliminates dependence on historical velocity during particle position updates. The algorithm
structure is simplified by the use of a single control parameter, the contraction-expansion coefficient

.
In this paper, QPSO is used to optimize four key parameters of LSTM—the number of hidden

layer nodes, the number of training iterations, and the learning rate. The quantity of hidden layer
nodes is set within the integer range of 1 to 200. The number of training iterations is defined within
the range of 10 to 100, and the learning rate is treated as a floating-point parameter between 0.001
and 0.01. The optimization process uses an iterative search strategy to efficiently explore the
parameter space. The specific steps for modeling the QPSO-LSTM prediction model are as follows:

1.Data preprocessing: To eliminate the influence of feature scale differences on the optimization
process, the power load data is normalized and then divided into training and testing sets.

2.Initialize particle swarm: Each particle in the swarm is used to represent a potential set of
parameters for the LSTM network, including swarm size, particle dimension, iteration count, and
particle position. These parameters are randomly initialized within the predefined search space.

3.Evaluate fitness: the particle location data serve as parameters for training the LSTM model,
while the Mean Squared Error (MSE) is utilized as the fitness function to evaluate each particle's
fitness.

4.Update particle position: Based on the fitness values, the optimal solution for each particle’s
individual and the global best solution for the swarm are identified, and the particle positions are
updated accordingly. The updated particle positions (i.e., new parameter combinations) are re-
evaluated, and their fitness values are updated accordingly.

5.Steps c and d are repeated until the best particle position is found or the QPSO algorithm
reaches the maximum iteration limit, at which point the QPSO optimization process is terminated.
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6.The optimal global value is provided to the LSTM network for hyperparameter optimization.
The model is subsequently employed to forecast the sample data from the test set.

3. Analysis of examples

3.1. Data preprocessing and parameter setting

In this paper, electricity load data from a certain region are used as the dataset, with data updated
every 15 minutes. The data is partitioned into training and test sets sequentially, allocating 70% for
training and 30% for testing. Time series samples are generated with the sliding window method,
wherein data from the preceding 10 time steps serve as inputs to forecast the following 2 time steps.
The max-min normalization method in Equation (12) is applied to process the power load data,
scaling the normalized data into the [0, 1] range to facilitate model training and optimization.

(12)

The particle swarm size M is established at 30. The iteration limit is established at 200 to
guarantee complete convergence of the algorithm and prevent premature cessation. The particle
dimension D is set to 4, corresponding to the four optimization parameters: the quantity of nodes in
the two hidden layers, the number of training epochs, and the learning rate. This case study is
implemented in the MATLAB R2022b programming environment. The Adam optimizer is used for
training, with the mini-batch size set to 16.

3.2. Evaluation criteria

The model prediction accuracy evaluation metrics selected in this paper are the root mean square
error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and the
coefficient of determination . Each metric quantifies the deviation between the predicted values
and the actual values from different perspectives. The specific expressions are presented in
Equations (13) to (16).

(13)

(14)

(15)

(16)
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The RMSE amplifies larger errors and reflects the overall dispersion of the forecast results. The
MAE reflects the average deviation between the predicted and actual values. The MAPE expresses
the relative size of the prediction error in percentage terms and is used for comparative analysis of
different methods. The smaller the values of these three indicators, the higher the prediction
accuracy, the smaller the relative error, and the more effective the fitting of the model.  measures
the model's fit to the load data, with a value closer to 1 indicating stronger ability to capture data
characteristics, and it is suitable for comparing the fitting performance of different models.

3.3. Experimental results analysis

The QPSO-LSTM model, PSO-optimized LSTM model, and LSTM model are constructed with
the training set data for load forecasting, and the prediction outcomes are compared based on
evaluation metrics. The comparison of prediction evaluation metrics is shown in Table 1.

Table 1: Comparison of prediction performance for different models

Algorithm RMSE MAE MAPE/%

LSTM 3994.0895 2821.9049 6.8639% 0.5072

PSO-LSTM 3026.9446 2036.0685 5.1307% 0.7170

QPSO-LSTM 2878.9792 1988.4237 4.8998% 0.7440

The prediction accuracy of the model has shown a significant enhancement when compared to
the conventional LSTM model after optimization with PSO and QPSO. Among them, the PSO-
LSTM and QPSO-LSTM models outperform the LSTM model in terms of RMSE, MAE, and
MAPE metrics. The QPSO-LSTM model achieves the smallest values in all three metrics, further
demonstrating the efficacy of the QPSO algorithm in improving model prediction stability and
accuracy. The QPSO-LSTM model possesses the highest , indicating that it provides the best fit
for the load data.

To provide a more intuitive comparison between different models, the prediction results are
generated and compared, as shown in Figure 2. The LSTM curve exhibits a notable deviation from
the actual values, especially in areas with large load fluctuations, where it fails to effectively capture
the load variation trend. Compared to LSTM, the PSO-LSTM curve is closer to the real values and
responds better to load fluctuations, but there are still delays or amplitude deviations in some areas.
The prediction accuracy and fitting performance of the QPSO-optimized LSTM model are generally
comparable to those of the PSO-LSTM model, but slightly better at peak points. The QPSO-LSTM
curve fits the real values the best. This performance is consistent with the conclusions drawn from
metrics such as RMSE, MAE, and MAPE, further validating the improvement in model
performance brought by the optimization algorithm, with QPSO showing the most significant effect.
The method effectively addresses the randomness of manual hyperparameter tuning in LSTM by
leveraging the global search capability of QPSO, providing a viable solution for parameter
optimization in power load forecasting models.
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Figure 2: Comparison of prediction results of various models

4. Conclusion

This paper introduces a novel approach integrating quantum-behaved particle swarm
optimization (QPSO) with long short-term memory (LSTM) networks to enhance ultra-short-term
power load forecasting. By leveraging QPSO’s global search capability, critical LSTM parameters—
including hidden layer node count, learning rate, and training iterations—are systematically
optimized, addressing the limitations of manual empirical tuning in conventional LSTM
frameworks. The methodology begins with normalizing raw load data and partitioning it into
training and testing subsets. Subsequently, the QPSO-driven swarm iteratively explores parameter
combinations to refine the LSTM architecture. Validated through empirical case studies, the
optimized QPSO-LSTM model demonstrates superior performance compared to LSTM and PSO-
LSTM variants. Quantitative evaluation using RMSE, MAE, and MAPE metrics reveals significant
accuracy improvements, while the highest  value confirms enhanced data-fitting capability. This
method achieves a synergistic optimization of prediction accuracy and fitting capability under high
fluctuation load scenarios, providing an efficient and reliable solution for load forecasting in power
systems characterized by substantial renewable energy penetration.
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