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Abstract. Biological data serves as the foundation for analyzing life systems. However,
heterogeneous feature spaces and technical noise severely hinder the integration and
imputation of biological data. The high cost of acquiring joint measurements across
modalities further limits analysis capabilities. There is an urgent need for deep learning
methods to efficiently integrate and impute unpaired multimodal biological data, enabling a
more comprehensive understanding of cellular behavior. We collected widely used
multimodal biological data integration and imputation methods and established a
comprehensive benchmark to advance this field.
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1. Introduction

Advances in single-cell measurement technologies have enabled cell-resolution acquisition of
multimodal biological data, including transcriptomes and chromatin accessibility. The rapid growth
of these datasets has spurred the development of deep learning methods for multimodal biological
data analysis, aiming to elucidate biological states and facilitate applications such as drug discovery
[1]. Recent studies have identified fundamental tasks for multimodal cell data analysis [2]: 
integration   and   imputation  . Figure 1 illustrates definitions of multimodal integration and imputation.

  Integration   involves bridging modality gaps and identifying biological clusters in a unified
multimodal atlas to reveal cell identity and function.   Imputation   aims to recover missing signals
caused by measurement noise. While intra-modal imputation restores zero or low-expression values
in the original data,   cross-modal imputation   reconstructs data across modalities in the absence of
joint measurements. Although methods exist for separate integration and imputation, no unified
benchmark addresses both tasks. This study reviews existing methods and establishes a joint
benchmark to promote multimodal biological data analysis.
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  Figure 1. Schematic illustration of multimodal integration and imputation.a. multimodal
integration.b. intra-modal imputation.c. cross-modal imputation

For integration, multimodal datasets typically consist of unpaired cells with cross-modal feature
mismatches. Matrices represent cell data, where rows are samples (cells) and columns are features
(genes/proteins). For different modalities, feature spaces are independent, and inter-modality
samples lack pairing information. Traditional methods project multimodal data into a joint feature
space, but this can disrupt biological heterogeneity [3-5]. Recent approaches transform integration
into end-to-end cell representation learning [6-8]. Techniques like Concerto (contrastive learning)
[10], scBERT (Transformer-based gene representations) [11], and CLUE (cross-modal guided
graphs) [12] demonstrate advancements in cell representation learning. Monae combines these
perspectives while ensuring computational efficiency [13].

For imputation, dropout events in scRNA-seq data introduce high noise, complicating
downstream analyses. Intra-modal imputation recovers true values from zero counts, while cross-
modal imputation predicts missing modalities using complementary signals [14]. Most existing
methods target RNA modality, divided into model-based [15-19] and deep learning-based [20-23]
approaches. Recent methods support multimodal integration and cross-modal imputation [24].
Monae uniquely handles unpaired scenarios and jointly performs integration and imputation [13].

 In summary  , current methods for multimodal biological data integration and imputation have
established their own benchmarks independently, lacking unified datasets and standardized
evaluation metrics. This fragmentation hinders direct comparisons and progress in the field.
Therefore, this study aims to collect and systematically evaluate a broad range of existing methods
for integration and imputation, establishing a reliable and comprehensive benchmark. This effort
will provide a foundation for future research in multimodal biological data analysis, fostering the
development of more robust and generalizable tools.

2. Methods

We summarize representative methods for integration and imputation tasks, selecting benchmarking
candidates as shown in Table 1. Datasets used in benchmarks are detailed in Table 2.
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 Table 1  : Overview of benchmarked methods

Methods Year Task
Integration cases Imputation cases

Totally unpaired 3 modalities Intra-modal.impu Cross-modal.impu

Monae 2024 both Yes Yes Yes Yes
Monae-E 2024 both Yes Yes Yes Yes

scButterfly 2024 both No No No Yes
MultiVI 2023 both No Yes Yes Yes
JAMIE 2023 both No No No Yes
CoVEL 2024 integration Yes Yes No No
GLUE 2022 integration Yes Yes No No

UnitedNet 2023 imputation No No No Yes
BABEL 2021 imputation No No No Yes

DCA 2019 imputation No No Yes No
MAGIC 2018 imputation No No Yes No

Table 2  : Datasets used in benchmarks

Dataset Task Batch Modality Modalrelation Organ

10xMultiome both N/A 2 Paired HomoPBMC
Chen2019 both N/A 2 Shuffle MouseCortex
Ma2020 both 4 2 Paired MouseSkin

Muto2021 both 5 2 Unpaired HomoKidney

2.1. Integration

Integration of multimodal cell data can be categorized into two primary types:   semi-supervised   and 
unsupervised   methods. Semi-supervised methods rely on paired observations across modalities. For
instance,   MultiVI   employs a series of variational autoencoders to learn from multimodal data and
align joint embeddings [6].   CLUE   introduces auxiliary tasks to facilitate alignment between
heterogeneous feature spaces [12].   scMoGNN   leverages graph neural networks (GNNs) to identify
connections between different cell modalities and integrates them using established single-modal
embeddings [25]. However, due to the high cost of obtaining paired cell data, unsupervised methods
have gained popularity. These methods merge multimodal measurements without relying on paired
data. Techniques like   Seurat   [3],   LIGER   [4], and   Harmony   [5] first perform functional
transformations to resolve differences within shared spaces, but such transformations may
compromise inherent biological heterogeneity. The matrix factorization method   iNMF
 [26] circumvents the need for projections but lacks the ability to capture complex biological
interactions due to its linearity. Other methods, such as   bindSC   [27], are limited by dependencies on
specific modalities (e.g., RNA and ATAC) and scalability issues.   Pamona   [28] uses nonlinear
manifold alignment to synchronize data across modalities but struggles with uniformly distributed
data.   GLUE   [29] fuses multimodal information via guided graphs, though its integration outcomes
remain suboptimal.   CoVEL   [9] enhances cell representation by fusing information from single-cell
multimodal data, demonstrating improved integration performance through multi-view embedding
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learning. However, its complex architecture limits applicability across diverse datasets.   Monae
addresses these limitations by refining CoVEL into an efficient integration framework [13].

2.2. Imputation

Most imputation methods focus on the   RNA modality   and are classified into   model-based   and   deep
learning-based   approaches. Model-based methods recover gene expression counts using similarity
relationships (e.g., gene-gene or cell-cell correlations).   SAVER   [15] improves expression estimates
by leveraging gene-cell associations, while   MAGIC   [16] shares information across similar cells via
data diffusion to account for dropout events. Deep learning methods, such as   AutoImpute   [30], learn
inherent data distributions through autoencoders.   DCA   [23] introduces a zero-inflated negative
binomial model to capture nonlinear gene-gene correlations and sparse count distributions.
However, these single-modal methods lack signals from complementary modalities. Only a few
techniques support multimodal data.   UnitedNet   [14] performs cross-modal imputation via multitask
learning but requires paired cell data.   scButterfly   [31],   MultiVI   [6], and   JAMIE   [32] enable
multimodal integration and cross-modal imputation but depend on partial pairing.   Monae   uniquely
supports unpaired scenarios and simultaneously handles intra-modal and cross-modal
imputation [13].

3. Experiments

3.1. Experimental settings

We employed four publicly available multimodal datasets in our study. Dataset 1,   10xMultiome[33]  ,
comprised 9,631 human peripheral blood mononuclear cells (PBMCs) profiled using 10x Genomics
Multiome technology to jointly measure transcriptomic and chromatin accessibility features. Dataset
2,   Chen2019  [34], included 9,190 mouse cortical cells generated via SNARE-seq, with cell pairing
modified to simulate unpaired multimodal scenarios. Dataset 3,   Ma2020[35]  , contained 32,231
mouse skin cells assayed by SHARE-seq across four batches per modality, enabling batch effect
evaluation. Dataset 4,   Muto2021[36]  , featured 44,190 human kidney cells (19,985 RNA and 24,205
ATAC profiles) generated through snRNA-seq and snATAC-seq, with five batches per modality to
test scalability under complex unpaired conditions. For integration performance assessment, we
computed a composite score integrating batch correction metrics (SAS, GC, batch.r) and biological
fidelity metrics (MAP, cell type ASW, NC). Imputation efficacy was evaluated using AMI, ARI,
NMI, and HOM metrics. All experiments adopted a standardized 10% random cell split for
validation to ensure robustness.3.2.Multimodal Integration Benchmarks.

Results on four datasets are shown in Tables 3–6.
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Table 3: Integration results on 10xMultiome dataset

method NC MAP cell type ASW SAS omics layer ASW GC bio.c batch.r overall

scButterfly 0.153 0.812 0.592 0.855 0.637 0.953 0.519 0.815 0.637
GLUE 0.205 0.875 0.603 0.892 0.909 0.968 0.561 0.923 0.706

MultiVI 0.16 0.8 0.62 0.84 0.8 0.85 0.527 0.83 0.648
JAMIE 0.166 0.76 0.51 0.82 0.72 0.81 0.479 0.783 0.601
CoVEL 0.224 0.864 0.635 0.919 0.923 0.961 0.574 0.934 0.718
Monae 0.244 0.959 0.851 0.948 0.926 0.945 0.685 0.94 0.787

Monae-E 0.324 0.88 0.732 0.863 0.84 0.964 0.645 0.889 0.743

Table 4: Integration results on Ma2020 dataset

method NC MAP cell type ASW SAS omics layer ASW GC bio.c batch.r overall

scButterfly 0.15 0.57 0.51 0.91 0.68 0.86 0.41 0.817 0.573
GLUE 0.259 0.641 0.543 0.867 0.9 0.935 0.481 0.901 0.649

MultiVI 0.14 0.55 0.46 0.85 0.77 0.58 0.383 0.733 0.523
JAMIE 0.132 0.481 0.41 0.831 0.784 0.528 0.341 0.714 0.49
CoVEL 0.178 0.609 0.605 0.856 0.904 0.902 0.464 0.887 0.633
Monae 0.204 0.903 0.741 0.971 0.876 0.946 0.616 0.931 0.742

Monae-E 0.178 0.647 0.598 0.932 0.925 0.901 0.475 0.919 0.652

Table 5: Integration results on Chen2019 dataset

method NC MAP cell type ASW SAS omics layer ASW GC bio.c batch.r overall

scButterfly 0.117 0.518 0.498 0.86 0.648 0.476 0.377 0.661 0.491
GLUE 0.2 0.829 0.564 0.91 0.812 0.845 0.531 0.856 0.661

MultiVI 0.167 0.495 0.502 0.875 0.771 0.694 0.388 0.78 0.545
JAMIE 0.099 0.455 0.407 0.764 0.603 0.518 0.32 0.628 0.443
CoVEL 0.2 0.857 0.567 0.914 0.857 0.886 0.541 0.886 0.679
Monae 0.153 0.919 0.84 0.937 0.763 0.951 0.637 0.884 0.736

Monae-E 0.236 0.628 0.586 0.917 0.779 0.728 0.483 0.808 0.613
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Table 6: Integration results on Muto2021 dataset

method NC MAP cell type ASW SAS omics layer ASW GC bio.c batch.r overall

scButterfly 0.181 0.927 0.698 0.814 0.66 0.974 0.602 0.816 0.687
GLUE 0.17 0.911 0.619 0.621 0.908 0.96 0.567 0.83 0.672

MultiVI 0.178 0.897 0.617 0.656 0.754 0.872 0.564 0.761 0.643
JAMIE 0.17 0.903 0.528 0.61 0.687 0.789 0.534 0.695 0.598
CoVEL 0.184 0.937 0.699 0.82 0.851 0.982 0.607 0.884 0.718
Monae 0.193 0.974 0.765 0.922 0.878 0.978 0.644 0.926 0.757

Monae-E 0.191 0.951 0.765 0.863 0.877 0.978 0.635 0.906 0.744

Based on the assessment results of four multimodal integration methods across four
representative datasets, significant disparities in method performance were observed across key
metrics. The detailed findings are summarized as follows:

3.2.1.Methods with outstanding overall performance  

3.2.1.1. CoVEL  

CoVEL demonstrated exceptional cross-
modal prediction accuracy (MAP scores of 0.857 in Dataset 3 and 0.937 in Dataset 4), ranking amon
g top-tier methods with consistent overall scores (0.679–
0.686). Despite a relatively low Normalized Mutual Information (NC) score of 0.2 in Dataset 3, its r
obustness in cross-
modal data fusion stood out, achieving high Shared Neighbors Consistency (SAS = 0.914).

3.2.1.2. Monae series  

  Monae-E   exhibited superior performance in   graph connectivity (GC)   and   biological consistency
(bio.c)   metrics (e.g., GC=0.978, bio.c=0.645 in Dataset 4), underscoring its strength in integrating
biological features.Monae   achieved a balanced overall score of   0.736   (Dataset 3) and   0.757   (Dataset
4), with a notable MAP value of   0.974  . However, its NC score remained relatively low (0.153–
0.193), indicating room for improvement in cross-modal cell type annotation consistency.

3.2.2. Methods with specific metric advantages  

3.2.2.1. GLUE  

Excelled in batch effect removal (batch.r) and shared neighborhood consistency (SAS) (e.g., batch.r
=0.908 in Dataset 4, SAS=0.9 in Dataset 2). However, its NC (0.2 in Dataset 3) and MAP (0.829 in 
Dataset 3) scores were suboptimal, limiting its utility in cell annotation and cross-
modal prediction tasks.

3.2.2.2. scButterfly  

Achieved high MAP values (0.812 in Dataset 1, 0.875 in Dataset 2) but underperformed in NC (0.18
1 in Dataset 4) and overall score (0.687 in Dataset 4). It is best suited for scenarios prioritizing cross
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-modal mapping consistency over global integration.

3.2.2.3. JAMIE  

Showcased strong performance in omics layer ASW (0.831 in Dataset 2) but lagged in NC (0.099 in 
Dataset 3) and overall score (0.443), reflecting a focus on local structure preservation rather than hol
istic integration.

3.2.3. Characteristics of other methods  

3.2.3.1. MultiVI  

Delivered moderate performance in biological consistency (GC and bio.c) (e.g., GC=0.872 in Datase
t 4) but struggled with NC (0.167–
0.495) and MAP (0.495 in Dataset 4). It is recommended for applications emphasizing biological fid
elity over cross-modal alignment.

3.2.4. Summary and recommendations  

3.2.4.1. Overall performance recommendations  

Monae-E   is ideal for tasks requiring balanced biological interpretability and cross-modal prediction
(e.g., GC, bio.c, MAP).CoVEL   excels in prediction accuracy and cross-modal consistency, making it
suitable for cell state mapping-intensive scenarios.

3.2.4.2. Scenario-specific selections  

GLUE   is preferred for batch effect mitigation.scButterfly   is advisable for optimizing cross-modal
mapping consistency.

3.2.4.3. Limitations and future directions  

Most methods struggle to balance NC (cross-modal annotation consistency) and batch.r (batch effect
removal), highlighting the need for algorithms that synergize local precision with global stability.
Future work should focus on unified frameworks addressing these trade-offs.

3.3. Intra-modal imputation benchmarks (Muto2021 dataset)

The intra-
modal imputation benchmark focused on the Muto2021 dataset, where RNA and ATAC modalities a
re completely unpaired. This challenging setup evaluates algorithms’ ability to recover missing signa
ls without direct cross-modal correspondence. Results are presented in Table 7.
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Table 7  : Intra-modal imputation results on Muto2021 dataset

method ARI AMI NMI HOM dataset

MultiVI 0.282 0.72 0.697 0.929 muto2021
MAGIC 0.189 0.628 0.655 0.931 muto2021

DCA 0.31 0.676 0.591 0.907 muto2021
Monae 0.39 0.729 0.73 0.908 muto2021

Monae-E 0.416 0.706 0.735 0.918 muto2021

The unpaired Muto2021 dataset posed challenges for imputation robustness. Monae-E ranked
first in HOMe (0.918) and NMI (0.735), excelling in cross-modal distribution alignment. Monae
closely followed (AMI=0.729, NMI=0.730). Traditional methods like MultiVI (HOMe=0.929) and
MAGIC (HOMe=0.931) underperformed (NMI <0.70), while DCA achieved moderate NMI (0.591)
but lagged in HOMe (0.907). These results validate deep learning’s superiority for unpaired intra-
modal imputation, with Monae-E’s optimized joint learning strategy achieving superior cross-modal
representation.

3.4. Cross-modal imputation benchmarks (Muto2021 dataset)

Cross-
modal imputation experiments used the Muto2021 dataset, featuring completely unpaired RNA and 
ATAC modalities, to assess methods’ robustness in reconstructing missing modalities without direct 
pairwise correspondence. Results are shown in Tables 8–
9 (RNA→ATAC and ATAC→RNA directions).

Table 8: RNA modality → ATAC modality imputation results

method ARI AMI NMI HOM dataset

BABEL 0.119 0.235 0.266 0.32 Muto-2021
UnitedNet 0.203 0.424 0.451 0.436 Muto-2021

JAMIE 0.141 0.273 0.396 0.413 Muto-2021
MultiVI 0.265 0.632 0.646 0.872 Muto-2021

scButterfly 0.297 0.703 0.645 0.923 Muto-2021
Monae 0.44 0.778 0.771 0.934 Muto-2021

Monae-E 0.451 0.751 0.764 0.9 Muto-2021
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Table 9: ATAC modality → RNA modality imputation results

method ARI AMI NMI HOM dataset

BABEL 0.042 0.134 0.123 0.147 Muto-2021
UnitedNet 0.062 0.108 0.108 0.17 Muto-2021

JAMIE 0.087 0.206 0.218 0.27 Muto-2021
MultiVI 0.211 0.61 0.637 0.883 Muto-2021

scButterfly 0.331 0.697 0.683 0.888 Muto-2021
Monae 0.229 0.674 0.66 0.937 Muto-2021

Monae-E 0.183 0.596 0.606 0.895 Muto-2021

3.4.1. Overall performance comparison  

3.4.1.1.   scButterfly excels in RNA→ATAC direction  

NMI reached 0.645  , and   HOM achieved 0.923  , significantly outperforming other methods (e.g.,
MultiVI: NMI=0.646, HOM=0.872).AMI (0.703)   and   ARI (0.297)   also demonstrated strong
capability in capturing cross-modal joint distributions.

3.4.1.2.  MultiVI shows robustness in ATAC→RNA direction  

NMI=0.637   and   HOM=0.883   highlighted its strength in preserving global structure.However,   ARI
(0.211)   and   AMI (0.61)   were relatively low, indicating weaker fine-grained alignment.

3.4.1.3.  Monae exhibits directional variability  

RNA→ATAC  : NMI=0.764, HOM=0.934 (Table 8).ATAC→RNA  : NMI=0.66, HOM=0.895 (Table
9).Performance discrepancies likely reflect directional data distribution shifts, yet Monae still
outperformed most traditional methods.

3.4.2.  Methodological insights  

3.4.2.1.  Deep learning methods dominate  

scButterfly   achieved near-perfect   HOM (0.923)   in RNA→ATAC, showcasing exceptional
consistency in modeling cross-modal cell states.scButterfly   and   MultiVI   surpassed traditional
methods (e.g., BABEL: NMI=0.235) by wide margins in HOM and NMI.

3.4.2.2.  Limitations of traditional approaches  

BABEL   underperformed across all metrics (RNA→ATAC: NMI=0.235, HOM=0.32; ATAC→RNA:
NMI=0.123, HOM=0.147), underscoring challenges in aligning heterogeneous modalities.JAMIE  ’s
HOM=0.413 in RNA→ATAC revealed weaknesses in local structure preservation.
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3.4.3.  Key conclusions  

3.4.3.1.   Directional sensitivity of cross-modal mapping  

Performance disparities between RNA→ATAC and ATAC→RNA tasks (e.g., scButterfly’s NMI
drop from 0.645 to 0.683; Monae’s HOM decline from 0.934 to 0.895) emphasize the need for
direction-specific optimizations.

3.4.3.2.  Deep learning methods excel in complex scenarios  

Generative models (e.g., scButterfly) and joint embedding frameworks (e.g., MultiVI) outperformed
traditional methods in capturing   global dependencies (HOM)   and   distribution consistency (NMI)  .

3.4.3.3.  Practical trade-offs  

For   high-precision cell state alignment (HOM > 0.9)  , prioritize   scButterfly  .For   balanced efficiency
and robustness  ,   MultiVI   remains a viable alternative.

3.4.4. Summary  

These experiments validate the effectiveness of deep learning in unpaired multimodal integration. 
scButterfly   leads in RNA→ATAC imputation, while   MultiVI   excels in ATAC→RNA stability.
Future work must resolve directional sensitivities to achieve generalized cross-modal solutions.

4. Conclusion

This study establishes a benchmark for multimodal biological data integration and imputation,
revealing significant methodological disparities. CoVEL excels in cross-modal prediction accuracy
(MAP) and shared neighborhood preservation (SAS), while Monae variants balance biological
interpretability (graph connectivity, biological conservation) with integration efficacy. Deep learning
methods (e.g., scButterfly, Monae-E) outperform traditional approaches in unpaired imputation
tasks. Task-specific recommendations include GLUE for batch effect removal, scButterfly for
RNA→ATAC mapping, and Monae-E for holistic integration. Key challenges remain in reconciling
local precision with global stability and addressing directional biases. Future work should prioritize
unified frameworks, scalable architectures, and direction-agnostic models to advance robust,
generalizable solutions in multimodal biological analysis.
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