Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/2025.24500

Diversified Interpretable Compatibility Modeling Based on
Multi-modal Disentanglement

Shuoji Sun'’, Miao Yu?, Xu Yu®

!School of Data Science, Qingdao University of Science and Technology, Qingdao, China
’College of Textiles and Clothing, Qingdao University, Qingdao, China
JInstitute of Software, China University of Petroleum (East China), Qingdao, China
*Corresponding Author. Email: shuojisun(@gmail.com

In recent years, compatibility modeling for evaluating whether fashion items
match has received widespread attention. The existing compatibility modeling methods
typically model the compatibility between fashion items based on multi-modal information.
However, these methods often fail to disentangle the rich attribute information in the high-
dimensional continuous representations of items, resulting in a lack of interpretability in
recommendations. At the same time, they also overlook the diverse matching methods
among the attributes of complementary items. This article proposes a Diversified
Interpretable Compatibility Modeling based on a Multi-modal Disentanglement model
(DICM-MD). In DICM-MD, we adopt disentanglement representation learning technology
to disentangle the complex attribute information of fashion items and comprehensively
evaluate the compatibility of items through diverse attribute matching methods. Specifically,
we use deep neural networks to estimate the mutual information among the dimensions of
high-dimensional continuous representations and adopt contrastive loss to encourage each
dimension in the item representation to learn independent attribute information. Then, we
learn the diverse attribute matching methods between complementary items from the
alignment and non-alignment perspectives to model the compatibility of items more
comprehensively. We conducted extensive experiments on the IQON3000 and Polyvore
datasets, demonstrating that DICM-MD outperforms state-of-the-art methods.

Multi-modal, Disentanglement representation learning, Compatibility Modeling.

In recent years, fashion analysis technology (e.g., compatibility modeling) has attracted widespread
attention and demonstrated great commercial value and research potential. The Compatibility
Modeling (CM) methods aim to calculate the compatibility score among complementary fashion
items (i.e., top, bottom, shoes, and accessories) and thus achieve compatible item recommendations.
At present, existing CM methods [1,2] typically utilize multi-modal information (e.g., images and
textual descriptions) on fashion items to evaluate the compatibility of complementary items. For
example, Yang et al. [3] established an end-to-end learning method, integrating the complementary
relationships of specific categories into the item embedding space for unified optimization. Although
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the above method considers item information from different modalities, it ignores fine-grained
attribute learning, resulting in a lack of interpretability in recommendations. Later, Lin et al. [4]
proposed a scalable method to learn the attention of style-based subspaces to enhance compatibility

Candidate attribute
75 ~|  compatibility score

iversified Interpretable Compatibility Modeling Compatibility Prediction

Figure 1: The overall framework of the DICM-MD model

prediction. However, the limited number of subspaces resulted in insufficient interpretability. Due
to the remarkable performance of disentanglement representation learning [5-8] in extracting
interpretability factors, some researchers have introduced it into interpretable CM. For instance, Liu
et al. [9] disentangled the representations of different modalities into k blocks based on covariance
and learned the role of each block in the recommendation. In addition, CM methods also integrate
multiple techniques, such as graph neural networks [10,11] and attention mechanisms [12,13] to
improve compatibility modeling performance.

Although the aforementioned approaches have achieved certain results, the following limitations
still persist: (1) The methods described above merely model the compatibility of the aligned
attributes between items (e.g., the color and category attributes when matching a white T-shirt with
black pants), ignoring the impact of candidate attributes on compatibility modeling. In fact, the top
"black and white striped vest" is matched with both the "black wide-leg long skirt" and "black
straight-leg long skirt" in terms of aligned attributes, but when further considering their candidate
attributes, the "V-neck" and "wide-leg" are more compatible than the "straight-leg". Therefore, it is
necessary to consider the candidate attributes to improve the diversity of compatibility modeling. (2)
The disentanglement method in the compatibility modeling work mentioned above ignores the
possibility of redundant information within the partitioned blocks. In addition, some frameworks
[14,15] use specialized region encoders to learn the local attributes of items but overlook the fact
that a limited number of attributes cannot meet the diverse matching requirements among items.
Especially when dealing with high-dimensional continuous representations of items, these methods
are difficult to adjust according to the complexity of the data. Therefore, it is essential to design a
disentanglement method according to the characteristics of the multi-modal representation of
fashion items to enhance the interpretability of recommendations and meet the diverse attribute
matching methods of the items.

Accordingly, to address the above research limitations, we devise a Diversified Interpretable
Compatibility Modeling based on Multi-modal Disentanglement framework, termed DICM-MD.
Figure 1 illustrates our proposed method, which involves multi-modal feature fusion, contrastive
disentanglement attributes learning based on deep mutual information, diversified interpretable
compatibility modeling, and a compatibility prediction module. Specifically, DICM-MD adopts
deep neural networks to evaluate the mutual information between dimensions when facing high-
dimensional continuous representations of items and gradually optimizes its independence based on

66



Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/2025.24500

contrastive loss functions, encouraging each dimension to learn independent information. This
measure is beneficial for disentangling rich attribute representations and improving the
interpretability of recommendations. Then, considering the complexity of attribute matching
between complementary items, DICM-MD wuses the attention mechanism for diversified
interpretable compatibility modeling, which comprehensively describes the compatibility degree of
complementary items from the perspective of the alignment attribute and candidate attribute.

Our main contributions can be summarized as the following three points:

(1) We propose a multi-modal disentanglement method named Contrastive Disentangled Attribute
Learning based on Deep Mutual Information (CDAL-DMI), which is to evaluate the mutual
information among dimensions of high-dimensional continuous representations and constrains their
independence based on contrastive loss. To the best of our knowledge, we are the first to utilize
mutual information to disentangle item attributes in compatibility work.

(2) We design a Diversified Interpretable Compatibility Modeling method (DICM) to
comprehensively evaluate the compatibility between complementary items through the diverse
compatibility scores from two perspectives: alignment attribute and candidate attribute.

(3) We conducted extensive experiments on the real datasets IQON3000 and Polyvore, and the
results validated the superiority of DICM-MD over advanced baselines.

The prosperity of the fashion field has drawn researchers' attention to fashion analysis, leading to the
emergence of a variety of CF frameworks for evaluating the matching degree between fashion items.
Previous CF methods [16,17] solely utilized single-modal information (e.g., visual or textual) of
fashion items, neglecting the potential of multi-modal information. As a result, most existing works
have gradually shifted their focus to multi-modal compatibility modeling (e.g., visual images and
textual descriptions). For instance, Li et al. [18] employed RNN networks to predict the next
complementary item. Later, Goto et al. [19] designed an autoencoder based on long short-term
memory (LSTM) networks to mine style information from items. However, sequential structures are
more suitable for predicting the compatibility of multiple clothing items rather than just top-bottom
pairs. Given the superior performance of graph neural networks in learning structural features, some
researchers have utilized graph neural networks to model item compatibility. For example, Cui et al.
[10] proposed node-wise graph neural networks to model various forms of clothing compatibility.
Although these methods achieved certain results, their recommendation processes lack
interpretability. Therefore, Lin et al. [4] introduced an expandable approach to learn style-based
subspace attention for enhancing compatibility prediction. However, the limited number of
subspaces leads to insufficient interpretability. In reality, the compatibility between fashion items
depends on attribute pairings, yet existing approaches only focus on matching alignment attributes.
In contrast, we model the diversified matching patterns of fashion items from both alignment and
candidate attribute perspectives. Table 1: Rules to format sections

Disentanglement representation learning aims to learn the latent factors present in the observed data.
Due to its robustness and interoperability, some articles introduce disentanglement representation
learning to solve complementary term recommendation tasks. For example, Wang et al. [27]
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designed a graph-based disentanglement representation learning scheme that exploits the
compatibility between different parts of an item to accomplish complementary recommendations.
Similarly, Wang et al. [22] learn disentangled representations between heterogeneous information of
items to complete the recommendation task. Despite the results achieved by these approaches, their
delineation of item attributes is not comprehensive. Therefore, Liu et al. [9] proposed to use the
distance between item attributes as a regularization term to learn the disentanglement attribute
representation, but this approach cannot capture the non-linear relationship between attributes, so it
cannot divide the attributes effectively.

Inspired by the above work, we propose a comparative disentanglement attributes learning
method based on deep mutual information, which employs deep neural networks to learn the mutual
information between different dimensions of item representations and then imposes independence
constraints on each dimension using contrastive loss. Our approach aims to encourage each
dimension in the high-dimensional continuous representation of fashion items to learn independent
attribute representations, thereby preparing for subsequent modeling of attribute matching patterns.

We have a set of tops and bottoms denoted as T={Ty, -, T, Tn,} and
B={B,,---,B;,---,By,} , where N; and Ny represent the total number of tops and bottoms,
respectively. Each top T; and bottom B; involves multi-modal information (i.e., visual and textual
modalities). We use V(V,) € R"? and C;(C,;) € R to represent the visual and textual features
of the top T; (bottom B; ), respectively. In this paper, we propose a diversified interpretable
contrastive disentanglement compatibility modeling approach F , which is able to disentangle the
multi-modal information of the items to improve the interpretability of the recommendation task.
Furthermore, it improves the performance of diversified compatibility modeling r;; by
simultaneously considering alignment attribute compatibility modeling score r, and candidate
attribute compatibility modeling score r. . Formally, we have:

rij = F(ra,7c | Vit, Vjp, Cit, Cjp, ©) (D

where © denotes the set of model parameters.

Currently, pre-trained models have been extensively employed and have achieved remarkable
success in the field of computer vision [23,24]. Consequently, we utilize the pre-trained Vision
Transformer (ViT) to extract the visual feature V; ( Vj ) from the original image of the top T;
(bottom B; ). ViT model divides the image into multiple patches and subsequently transforms them
into low-dimensional embedding through linear itemion. After combining the patch embedding with
their corresponding positional embedding, we feed them into a 12-layer transformer encoder as a
sequence to capture the contextual information. The final visual feature V; is generated by the
Multi-Layer Perceptron (MLP ).

To obtain the textual feature C; ( Cj ) of the top T; (bottom B; ), we leverage the
Bidirectional Encoder Representations from Transformers (BERT), which exhibits robust
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generalization capabilities. In this paper, we choose the basic version of BERT, comprising 12
Transformers. Bert model decomposes the associated text description into individual words and then
converts them into embedding vectors. Subsequently, it is encoded by a set of transformer encoders
to derive the textual feature C;; .

In fact, different modalities can express different attribute information of fashion items. In order
to comprehensively explore the potential of multi-modal in compatibility modeling, we concatenate
the visual feature V;; and the textual feature C; to obtain the multi-modal feature Z, ={ V|| Cy

p={ et )
3.3. Contrastive disentanglement attributes learning based on deep mutual information

As a matter of fact, the compatibility between complementary items is significantly influenced by
the attributes of the items. Existing multi-modal compatibility modeling methods mainly focus on
computing the compatibility directly based on the overall feature within a latent compatibility space
(e.g., style space [25]). Nevertheless, they ignore the effect of repetitive and redundant information
in multi-modal attributes on compatibility modeling. In order to increase the independence within
the multi-modal attributes and improve the interpretability of compatibility modeling, we designed
the Contrastive Disentanglement Attributes Learning based on Deep Mutual Information (CDAL-
DMI).

Mutual information was first proposed to measure the degree of dependence between variables
[26]. Given two variables z and y , the stronger the independence between them, the lower the
mutual information, and vice versa. Formally, the mutual information I(z;y) can be expressed as
[27]:

I(23y) = Ep(ou) [log 752 | @)

where p(z,y) denotes the joint distribution of variables =z and y, p(z) and p(y) denote the
marginal distributions of the variables, respectively. In this paper, we disentangle the multi-modal
feature based on mutual information. Taking Z; of the top T; as an example, we disentangle it as
Z, :{i"}, f? ,---,ff} . Nevertheless, it is difficult to calculate precisely the value of mutual

information between high-dimensional continuous variables output by neural networks [28].
Therefore, we approximate the value of mutual information between attributes by calculating the
mathematical expectation of the neural network output values. According to equation (2), the mutual
information I(¢7;t*) between m -th and n -th dimensional representations of the top 7; can be

1171
expressed as:
(@7t7)
I <t§”5 t?) = Ep(epan) [log p?t?)p(t?)} ®)

In order to further promote the independence among the attributes of fashion items. we construct
the following contrastive loss %, =:

p(tr )

Pt/ p(t7)

i

tm gn
Zni = Byiraplog iy — Bptranlog

4)
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where ¢ denotes a randomly selected sample of negative attributes from other items. We can

obtain the disentangled representation Z, = { b, 532. ,oee, b } of the bottom B; in a similar manner.

3.4. Diversified interpretable compatibility modeling

Based on the disentangled item attributes Z; = { &, Ef IR } and Z, = { b, Ej ,---,13;? }, we

further consider the complex compatibility rules and design the following: 1) Alignment attribute
compatibility modeling. 2) Candidate attribute compatibility modeling. Learning diverse matching
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Figure 2: The examples of fashion items alignment attribute matching

methods between item attributes from two perspectives to improve the interpretability of
complementary recommendation tasks.

Alignment attribute compatibility modeling: We usually pick complementary items based on
alignment attributes in actual clothing matching. For example, both bottoms (b) and (c¢) in Figure 5
are plaid pleated skirts. Nevertheless, the bow of the top (a) matches the color of the bottom (b), and
both share the text description of “blue plaid". Consequently, considering the alignment attribute
between complementary items (i.e., color), bottom (b) is more compatible with the given (a) than
(c). We first calculate the alignment attribute weight a@,, as follows:

am =W, -a(W|im|[b7| + b
( exLam) J} ) (5)

" Y exp(an)

a

where W, , W and b are learnable network parameters. o serves as the sigmoid activation
function. Then, the alignment attribute compatibility score r, can be obtained as follows:

ro =Yt an oI b7) (6)
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Figure 3: (a) and (c) are examples of matching candidate attribute for fashion items,(b) is a
schematic diagram of the Miller-Lyle illusion

Candidate attribute compatibility modeling: As a matter of fact, relying solely on the alignment
attribute between complementary items is inadequate for compatibility evaluation. It is imperative to
incorporate candidate attributes to improve the performance of compatibility modeling. For
example, in Figure 6, the “black and white striped vest" matches well with the two “black long
dress" in terms of alignment attributes (i.e., color). However, when further considering the features
of the neckline and hem, a more optimal match emerges between the “wide-leg long" dress and the
“V-neck" vest. This may be mainly attributable to the Miller-Lyer illusion in Figure 6, which makes
the match in Figure 6(a) visually elongate a person's height. Consequently, we introduce the

candidate attribute compatibility modeling and calculate the candidate weight b,,, as follows:

b = W, - o(Wir|[B2] + )
lA) =M (M =12 k ) (7)
mn = Manim | st In = 1.2, k.

Unlike the alignment attribute compatibility modeling, we select the attribute corresponding to
the maximum weight b,, as the candidate attribute. Thus, we obtain the candidate attributes
compatibility score r. as follows:

Te = Zf,j:l Bm,n ’ a'({;n ’ 57) (8)

3.5. Objective loss

Based on the diversified compatibility score 7, and r., we can calculate $r {i,j}$ for the
recommendation task as follows:

rij=0—p) ratp-re (9)

where p is a balance parameter to control the weight of Alignment attribute compatibility
modeling and Candidate attribute compatibility modeling.

71



Proceedings of the 3rd International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/2025.24500

In order to accurately model the compatibility between items, we utilize the Bayesian
Personalized Ranking (BPR) framework to construct the following triad 25 based on the public
dataset:

PDs ={(1,5,k) | Ti€ 7,B;c B" NB,c B\RB"} (10)

where the triple 25 denotes that the bottom £+ from the set of positive examples B; is more

compatible with the given top 7; than the bottom Bj . From this, we can construct the following
loss:

Lo = Ysyens — n(olry —ra) (11)

We jointly optimize the mutual information contrastive loss .%,,; to obtain the following final
objective loss Z :

L= Lo +7%mi + 2|05 (12)

where v and )\ are non-negative balance parameters.
4. Experiment

To evaluate the proposed DICM-MD model, we conducted a series of experiments on two public
fashion datasets to address the following questions:

(1) Does our proposed DICM-MD framework outperform the state-of-the-art baselines?

(2) How does each component affect the proposed DICM-MD framework?

(3) How does the DICM-MD perform in the complementary item retrieval task?

Dataset: To validate the effectiveness of our proposed DICM-MD model, we leverage two public
datasets: IQON3000 and Polyvore. The former contains 308,747 outfits, totaling 672,335 fashion
items (e.g., tops, bottoms, and shoes). The latter consists of 66,000 outfits, totaling 158,503 fashion
items. Each item in both datasets is associated with a visual image and a descriptive title.

Evaluation indicators: We adopted Area Under Curve (AUC) and Mean Reciprocal Ranking
(MRR) [29] to measure the effectiveness of the DICM-MD model. Formally, we defined the AUC as
follows:

AUC = lef‘ Z(i,j,k)estest 8(rij — Tik) (13)

where §(-) returns 1 when the parameter is greater than 0 and returns 0 otherwise. S denotes
the test set. The MRR can be defined as follows:

1 |Stest| 1
MRR = 5= >/ 7 (14)

where Rg.i) represents the sorting position of a positive bottom B; based on r;; .
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Experiment Settings: We utilized Adam [30] to optimize our proposed DICM-MD model.
Specifically, the batch size and learning rate are searched from [32,64,128,512,1024] and
[0.0001,0.0005,0.005,0.001], respectively. The Loss ¢ and AUC in Figure 2 (a) stabilize gradually
after notable fluctuations, which indicates the excellent convergence of DICM-MD. Figure 2 (b)
illustrates the variation of AUC with the hyperparameter p . As depicted in this figure, the DICM-
MD achieves optimal performance when p is set to 0.4, highlighting the effectiveness of both
alignment attribute compatibility and candidate attribute compatibility in our model.
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Figure 4: The training loss and AUC change curves with iteration epochs; (b) The variation curve of
AUC with different n values

In order to scientifically evaluate our DICM-MD model, we compared it with the following
baselines:

(1) POP: The compatibility is determined by the number of tops in the training set that are
matched with the bottom B; .

(2) RAND: We randomly assign the score r; to measure the compatibility between
complementary items.

(3) Bi-LSTM [31] models the given items as a sequence to predict the next compatible item.

(4) V-BPR [17] models the compatibility between items solely based on their visual features.

(5) AHGN [32] constructs a heterogeneous graph utilizing the visual attributes of items, which
learns the interaction information between items.

(6) VT-BPR: We extended the V-BPR to evaluate the compatibility with multi-modal data.

(7) MNLFF [33] learns hierarchical multi-modal representations and assesses the compatibility
between complementary items based on the scores between them.

(8) PAI-BPR [34] learns the attribute information of the item via the visual modality and
subsequently integrates the corresponding textual modality for compatibility modeling.

(9) MDR [15] disentangles multi-modal features in a partially supervised manner to achieve
interpretable recommendations.

(10) FCM-CMAN [12] learns its disentangled representation hierarchically over the multi-modal
information of the item.

(11) LGMRec [11] focuses on learning the disentangled information of items based on the global
and local graphs.

Table 1 shows the performance comparison of different baselines, we can observe the following:
(1) Compared with pop and rand, Bi-LSTM performs better, which indicates the necessity of item
interactions in compatibility modeling. (2) V-BPR and AHGN outperform Bi-LSTM, suggesting that
content-based approaches provide more item information than sequence-based approaches for
compatibility modeling. (3) The methods (V-BPR and AHGN) that rely solely on the visual modality
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exhibit lower performance than other multi-modal methods, primarily due to the additional attribute
features provided by the textual information. (4) FCM-CMAN, LGMRec, and MDR outperform
PAI-BPR and MNLFF, demonstrating that disentanglement improves the compatibility modeling of
complementary items. (5) The DICM-MD results proves the necessity of incorporating diversified
interpretable compatibility modeling in complementary recommendation tasks.

Table 1: Performance of different methods based on AUC and MRR evaluation indicators

IQON3000 Polyvore

Methods
AUC MRR AUC MRR
POP 0.6039 0.2049 0.6072 0.2087
RAND 0.5003 0.2137 0.5059 0.2162
Bi-LSTM 0.6746 0.3354 0.6693 0.3423
V-BPR 0.7863 0.6508 0.7881 0.6791
AHGN 0.7955 0.6972 0.8033 0.7011
VT-BPR 0.8205 0.8097 0.8297 0.8118
MNLFF 0.8397 0.8144 0.8451 0.8255
PAI-BPR 0.8554 0.8174 0.8537 0.8267
MDR 0.8597 0.8204 0.8692 0.8388
FCM-CMAN 0.8643 0.8304 0.8722 0.8491
LGMREC 0.8689 0.8361 0.8871 0.8593
DICM-MD 0.8848 0.8463 0.8961 0.8677

Table 2: The experimental results comparison under different Top-K values in terms of NDCG@K

and HR@K
Datesets Evaluation IBR VBPR HFGN VTBPR PAI-BPR DICM-MD
NDCG@10 0.1628 0.2366 0.2393 0.2467 0.2567 0.3317
NDCG@15 0.2076 0.2790 0.2841 0.2874 0.2845 0.3722
NDCG@20 0.2489 0.3128 0.3172 0.3207 0.3386 0.4000
QON3000
HR@10 0.3463 0.4767 0.4815 0.4967 0.5087 0.6080
HR@15 0.5194 0.6545 0.6588 0.6707 0.6802 0.7614
HR@20 0.6870 0.7973 0.7990 0.8100 0.8125 0.8790
NDCG@10 0.4365 0.5057 0.5373 0.5467 0.5532 0.6470
NDCG@15 0.4519 0.5217 0.5460 0.5612 0.5715 0.6678
NDCG@?20 0.4764 0.5391 0.5670 0.5931 0.6133 0.6788
Polyvore
HR@10 0.6276 0.7307 0.7539 0.7678 0.7703 0.8338
HR@15 0.7739 0.7946 0.8082 0.8109 0.8145 0.9090
HR@20 0.8183 0.8371 0.8559 0.8712 0.8707 0.9557

To further validate the effectiveness of our DICM-MD model, we employed two ranking metrics
widely used in recommender systems: Hit Rate (HR), and Normalized Discounted Cumulative Gain
(NDCG), Specifically, HR evaluates the compatibility of the top K items recommended by our
model with the given item, and NDCG considers the position of the recommended item in the
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ranking list. Table 2 presents the recommendation results of different models in terms of the HR@K
and NDCG@K. From this table, we can observe that: (1) VI-BPR performs poorly, suggesting that
the complementary recommendation task cannot be performed without mining deeper
representations in multi-modal information. (2) FCM-CMAN, LGMRec, and MDR perform better
than MNLFF and PAI-BPR, which further demonstrates the advantages of disentanglement
representation learning for complementary recommendation tasks. (3) Our proposed DICM-MD
model performs optimally. This strongly indicates that the joint use of contrastive disentanglement
attributes learning and diversified interpretable compatibility modeling is highly effective in
complementary item recommendation tasks.

To verify the effectiveness of each component of our DICM-MD model, we conducted ablation
studies on the following derivatives:

(1) w/o-Disen: We removed the contrastive disentanglement module to verify the compatibility
performance.

(2) w/o-Candidate: In order to verify the effect of the diversified interpretable compatibility
modeling, we removed the candidate attribute compatibility modeling module.

(3) w/o-Alignment: Similar to (2), we removed the alignment attribute compatibility modeling
module.

(4) w/o-V: To investigate the role of different modalities in DICM-MD, we removed the visual
feature from the model.

(5) w/o-T: Similar to (4), we removed the textual feature from the DICM-MD.

Table 3: The performance comparison of DICM-MD and the variant models

IQON3000 Polyvore
Methods

AUC MRR AUC MRR
w/o-Disen 0.8513 0.8362 0.8683 0.8458
w/o-Candidate 0.7957 0.8015 0.8147 0.8212
w/o-Alignment 0.7243 0.7634 0.7464 0.7820
w/o-V 0.8041 0.7901 0.8230 0.8122
w/o-T 0.7016 0.7282 0.7346 0.7347
DICM-MD 0.8848 0.8463 0.8961 0.8677

Table 3 shows the results of the ablation experiments on AUC and MRR. DICM-MD outperforms
all variants, validating the efficacy of the model components. Specifically: (1) w/o-Disen did not
perform as well as the full model, proving that our proposed learning module for contrastive
disentanglement attributes learning based on deep mutual information is effective. (2) Based on
AUC metrics, DICM-MD improved by 9.9\% over w/o-Candidate, and 20.7\% over w/o-Alignment.
It can be seen that the diversified interpretable compatibility modeling module proposed in this
paper is better able to address the complementary recommendation task. The performance of w/o-
Candidate illustrates that alignment attribute compatibility modeling plays a dominant role in this
module. (3) Similarly, DICM-MD was 8.8\% and 24.7\% higher compared to w/o-V and w/o-T,
respectively. According to the results, both textual and visual modalities contain important attribute
information. In addition, w/0-V is superior to w/o-T, which may be because the textual features
contain more attribute information.
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Figure 5: Distribution of attributes of fashion items before and after disentanglement

In order to intuitively demonstrate the effect of the contrastive disentanglement attributes learning
method, we conducted visualization experiments. As shown in Figure 3, we randomly selected an
item and displayed the corresponding attribute distribution before and after disentanglement in the
same space with the t-SNE [35] method. As shown in Figure 7(b), the attribute distributions are
more spread out, highlighting that contrasting disentanglement attributes learning methods can
improve attribute independence and enhance the interpretability of complementary recommendation
tasks.

4.3. On complementary item retrieval (RQ3)

To validate the practicality of our work, we scientifically evaluated the performance of DICM-MD
and w/o-Candidate on the complementary item retrieval task. We considered the given top as a
“query” and randomly selected N bottoms as a candidate set, which contains one positive example
and N-1 negative examples. A ranked list is generated by computing the compatibility score between
the given top and bottom in the candidate set. In Figure 4, we showed the results of the ranking list
of DICM-MD and the variant w/o-Candidate for 10 candidate bottoms based on the given query.
The results show that the DICM-MD model proposed in this paper put the positive examples at the
top compared to w/o-Candidate, which further proves that the candidate attribute compatibility
modeling designed by us is effective. Therefore, the Diversified Interpretable Compatibility
Modeling is necessary in the task of Complementary Item Retrieval.

Query 1 2 3 4 S 6
S Dl ‘I “ “ |
— m" \
w/o-Candidate . ‘ ‘ \
1
DICM-MD i n i il
iy & |

w/o-Candidate ?m‘ A § 5 ;

Figure 6: Complementary fashion item retrieval experiment results, where the red box represents the
positive example

7‘,
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5. Conclusion and future work

In this paper, we present the DICM-MD model, which disentangles the multi-modal information of
fashion items and uses the diversified interpretable compatibility modeling module to explore the
interaction information of item attributes. Specifically, we propose a comparative disentanglement
attribute learning method based on deep mutual information, which uses a neural network to fit the
value of mutual information between attributes and designs a contrast loss to optimize this value and
gradually improve the independence between attributes. To fully explore the attribute compatibility
rules, we also designed aligned attribute compatibility modeling and candidate attribute
compatibility modeling to learn complex attribute interactions from two perspectives.
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