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Gold price forecasting is a crucial task in financial markets due to gold's unique
attributes as a commodity, precious metal, and currency. Traditional time series models such as
ARIMA are effective in capturing linear trends and seasonal components but struggle with
nonlinear dependencies present in gold price data. In contrast, deep learning models,
especially Long Short-Term Memory (LSTM) networks, excel at modeling complex nonlinear
relationships and long-term dependencies. However, standalone LSTM models may overlook
certain linear patterns. This paper proposes a novel hybrid forecasting approach that integrates
LSTM and ARIMA models to leverage the strengths of both methodologies. The LSTM model
first learns nonlinear features from historical gold price data, and the ARIMA model further
models the residuals to capture remaining linear trends. Empirical analysis is conducted using
daily gold price data from August 19, 2013, to November 22, 2024. Experimental results
demonstrate that the hybrid LSTM-ARIMA model significantly outperforms the standalone
LSTM model across all major evaluation metrics, with remarkable reductions in forecasting
errors and improvements in accuracy and robustness. The proposed hybrid model offers a
more reliable and precise tool for gold price prediction, providing valuable quantitative
support for investors and policymakers in the gold market.
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Gold, as an important financial asset, possesses the triple attributes of commodity, precious metal, and
currency [1], playing a crucial role within the international monetary system and global financial
markets [2]. Gold prices not only reflect changes in the global economic and financial environment [3]
but also serve as a "barometer" and "alarm signal" for global political and economic developments [4].
Fluctuations in gold prices exert profound impacts on global economic and financial stability; thus,
accurately predicting and analyzing gold price trends has become a primary concern for investors,
fund managers, and policymakers [5].

Traditionally, classical time series analysis methods, such as the Autoregressive Integrated Moving
Average (ARIMA) model, have been widely employed for gold price forecasting. These methods
perform well in capturing linear trends, seasonal patterns, and cyclical behaviors inherent in time
series data [7]. However, the main limitation of the ARIMA model lies in its inability to effectively
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handle nonlinear relationships [8]. In recent years, with the rapid advancements in data science and
artificial intelligence technologies, machine learning techniques—particularly those based on deep
learning—have increasingly been applied to gold price prediction research. Among these techniques,
the Long Short-Term Memory (LSTM) network, a specialized variant of Recurrent Neural Networks
(RNNs), has emerged as a widely adopted approach due to its powerful nonlinear modeling
capabilities and superior ability to capture long-term dependencies [9]. Consequently, LSTM models
have been extensively utilized for predicting prices in financial markets [10].

Although the LSTM model exhibits excellent performance in modeling complex nonlinear patterns,
studies have demonstrated its relatively lower sensitivity to certain linear trends and seasonal patterns
embedded within data [11]. Consequently, relying solely on the LSTM model may not adequately
capture all pattern features present in gold price data. In recent years, the scholarly community has
proposed the concept of hybrid models, combining traditional linear models with modern deep-
learning models to improve forecasting accuracy and robustness [12]. For instance, Achkar compared
forecasting results using data from Facebook and Google stocks as well as Bitcoin prices,
demonstrating that hybrid models based on LSTM significantly outperform traditional
backpropagation multi-layer perceptrons (BPA-MLP) models [13].

Motivated by the above considerations, this study proposes a hybrid modeling approach that
integrates LSTM and ARIMA models. The goal of this approach is to leverage the strengths of the
ARIMA model in capturing linear trends, seasonal patterns, and cyclical behaviors, along with the
LSTM model's strong capability for modeling nonlinear relationships and long-term dependencies,
thereby enhancing the accuracy of gold price forecasts [14]. Specifically, this study first employs the
LSTM network to model the gold price time series data, learning complex nonlinear dependencies
inherent within. Subsequently, the ARIMA model is utilized to further analyze the residuals between
actual values and LSTM predictions, capturing potential linear trends and cyclical patterns in these
residuals, thus effectively reducing forecasting errors.

The construction of a hybrid LSTM-ARIMA model consists of four steps: LSTM prediction, residual
series calculation, ARIMA modeling of residuals, and hybrid forecasting.

Mathematically, the basic mechanism of LSTM prediction can be expressed as [14]:

SLSTM
t

y = fLsmM (Y15 Yt=2, - - » Ye—p» Kt—15 Xt—2, - - - , Xt—q) (1)

where y; denotes the actual gold price at time t, and F5™ represent the predicted gold price at
time t , obtained from the LSTM model. The function figry(-) denotes the trained LSTM network

mapping function. p is the length of the historical price time window used for prediction. X ;
represents the vector of exogenous variables (e.g., macroeconomic indicators, technical indicators,
etc.) attime t —i. q is the length of the historical time window for the exogenous variables.

Calculate the residual series between the actual values and the LSTM-predicted values:

e =y —F5™ ()
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where e, denotes the residual at time t .
2.3. ARIMA modeling of residuals

The residual series e; obtained from the LSTM predictions is modeled using an ARIMA(p', d, q')
model as follows [15]:

®(B)(1 — B)e; = 0(B)e; 3)

Where B denotes the backshift operator, defined as Be, = e;—; . $(B) =1 — ¢;B — ¢pB>—... —¢,BY
is the autoregressive polynomial, 6(B) =1+ 6:;B + 0:B2+...+0,B% is the moving average polynomial,
and (1— B)* is the differencing operator, where d represents the order of differencing. The parameter

e: 1S a white noise process, and p’ and ¢’ represent the autoregressive and moving average orders of
the ARIMA model, respectively.

The ARIMA-based prediction of the residual at time ¢+ h can be expressed as the conditional
expectation:

€tyn = E[et+h | {et, €t—1,- - }] (4)

According to the computational process of the ARIMA model, this prediction can be further
expanded as:

CIENES Eipzl dietini — ng:l 0j€t 41 (5)
2.4. Hybrid forecasting

The final prediction of the hybrid model is derived by combining the LSTM prediction and the
ARIMA residual prediction, represented mathematically as follows:

«Hybrid _ sLSTM ~
Yerh = Yeyn t€t+h (6)

Where 70" denotes the final hybrid model prediction of the gold price at time t+h , FLST
denotes the LSTM model prediction of the gold price at time t+h, and &, represents the ARIMA
model prediction of the residual at time t+h .

2.5. Data source and model implementation

The proposed hybrid model is applied to gold price forecasting analysis using daily-frequency gold
price time series data covering the period from August 19, 2013, to November 22, 2024. The dataset
contains five key price indicators for each trading day: opening price, closing price, highest price,
lowest price, and trading volume, providing comprehensive dynamic information on gold prices for
the modeling process.

The constructed hybrid forecasting framework effectively integrates the advantages of deep
learning and traditional econometric methods. Specifically, the Long Short-Term Memory (LSTM)
network, with its specialized gating mechanisms, can effectively capture nonlinear characteristics and
long-term dependencies inherent in gold price data. Meanwhile, the Autoregressive Integrated Moving
Average (ARIMA) model demonstrates significant strengths in handling linear components, seasonal
fluctuations, and autocorrelation structures within residual series. By systematically combining the
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complementary capabilities of these two methodologies, the hybrid model effectively overcomes the
prediction limitations of single-model approaches in complex market environments, thereby
significantly enhancing both the overall accuracy and robustness of gold price time series forecasting.

3. Result and discussion
3.1. Evaluation metrics for forecasting performance

This study employs multiple evaluation metrics to comprehensively quantify and compare the
forecasting performance of the LSTM model and the hybrid LSTM-ARIMA model. Table 1 provides a
detailed comparison of the performance metrics for both models on the test dataset, along with the
improvement rates achieved.

Table 1. Comparison of forecasting performance metrics between LSTM and hybrid LSTM-ARIMA

models
Asses§ment of MAE MSE RMSE MAPE SMAPE RA2 DA maximum accurac
Indicators error y
129.1393 19084.2515 138.1457 0.05323 5.48355 0.59643 51.7391 0.9467
LSTM 06 66 2 ) 0 6 30 233.216713 69
LSTM+ARIMA 19.46853 608.690949 24.67166 0.00819 0.82007 0.98712 53.4782 20.784918 0.9918
7 3 7 7 8 61 03
Improvement rate ~ 84.92439 82.14084 84.6017 85.0447 65.5045 3.36134 4.7566
%) ) 96.810507 - 79 76 64 5 61.501508 13

As observed from Table 1, the hybrid model significantly outperforms the standalone LSTM model
across all evaluation metrics. Particularly noteworthy is the improvement in mean squared error
(MSE), wherein the hybrid model achieves an impressive reduction of 96.81%. Similarly, mean
absolute error (MAE) and Root Mean Squared Error (RMSE) declined by 84.92% and 82.14%,
respectively. The mean absolute percentage error (MAPE) notably decreases from 5.32% in the LSTM
model to 0.82% in the hybrid model, indicating a substantial increase in forecasting precision.
Additionally, the coefficient of determination (R?) improves markedly from 0.596 to 0.987, closely
approaching the ideal value of 1, reflecting a significant enhancement in the hybrid model's fitting
capability. Moreover, the maximum forecasting error is reduced by 61.50%, suggesting that the hybrid
model demonstrates greater robustness in handling extreme cases.

3.2. Visualization analysis of forecasting accuracy

To intuitively evaluate the forecasting capabilities of the two models, Figure 1 provides a scatter plot
comparison between predicted and actual values on the test dataset for both the LSTM and the hybrid
LSTM-ARIMA models.
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LSTM: Actual Value vs Predicted Value
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Figure 1. Scatter plot of predicted vs. actual values: LSTM model

LSTM+ARIMA: Actual Value vs Predicted Value
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Figure 2. Scatter plot of predicted vs. actual values: hybrid LSTM-ARIMA model

As illustrated in Figure 1, the predictions of the standalone LSTM model exhibit a scattered
distribution, markedly deviating from the ideal 45-degree reference line, and consistently
underestimate actual prices within higher price ranges. In contrast, predictions from the hybrid LSTM-
ARIMA model (as shown in Figure 2) closely cluster around the 45-degree line, indicating strong
consistency between predicted and actual values. This visualization result confirms that the forecasting
accuracy of the hybrid model is significantly superior to that of the individual LSTM model. Further
analysis of the gold price prediction curves, as shown in Figure 3, reinforces this implication.

Raw LSTM (accuracy) vs Residual Correction (Accuracy)
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Figure 3. Time series comparison of actual vs. predicted gold prices

Figure 3 demonstrates that the standalone LSTM model (represented by the blue line)
systematically underestimates gold prices throughout the entire testing period, with discrepancies
between predicted and actual prices (black line) progressively increasing over time. Conversely, the
predictions generated by the hybrid LSTM-ARIMA model (red dashed line) closely align with actual
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gold prices, resulting in a remarkable improvement in forecasting accuracy from 90.52% to 99.18%.
This demonstrates the superior predictive performance of the hybrid model.

3.3. Analysis of error distribution characteristics

To conduct an in-depth analysis of the error characteristics of both models, Figure 4 presents a
comparative boxplot visualization of the absolute errors.

Absolute Error Box Plot
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Figure 4. Boxplot comparison of absolute errors between LSTM and hybrid LSTM-ARIMA models

The boxplot clearly illustrates that the median absolute error for the LSTM model is approximately
$135, with an interquartile range spanning from $90 to $160. In contrast, the hybrid model exhibits a
significantly lower median absolute error of around $20, with the interquartile range notably
compressed to between $10 and $30. These results indicate that the hybrid model not only
substantially reduces the central tendency of forecasting errors but also significantly decreases error
dispersion, demonstrating more precise and stable predictions.

Further insights into the difference in model performance are revealed by examining how
forecasting errors evolve (as shown in Figure 5).

Error in Prediction over Time
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Figure 5. Temporal evolution of forecasting errors
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Figure 5 demonstrates that the prediction errors of the LSTM model (blue line) display a clear
upward trend over time, with maximum errors exceeding $200 and large fluctuations. In contrast,
prediction errors from the hybrid model (orange line) remain consistently low throughout the test
period, primarily within £$50 without noticeable trend bias. This indicates that the hybrid model
effectively mitigates the systematic error observed in the standalone LSTM model.

3.4. Cumulative error analysis

In practical financial forecasting applications, cumulative error is a crucial metric for evaluating a
model's long-term predictive performance. Figure 6 presents a comparative analysis of cumulative
absolute errors for the two models throughout the testing period

Cumulative Absolute Error Comparison
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Figure 6. Comparison of cumulative absolute errors

As shown in Figure 6, the cumulative error of the LSTM model (blue line) exhibits a clear linear
increasing trend, with the cumulative error approaching approximately $30,000 by the end of the
testing period. In contrast, the cumulative error growth rate for the hybrid model (orange line) is
significantly lower, with a cumulative error of only around $4,000 by the end of the testing period—
equivalent to merely 13.3% of the error observed in the standalone LSTM model. This outcome
indicates that the hybrid model possesses substantial advantages in long-term forecasting, effectively
mitigating cumulative error effects and providing a more reliable reference for predicting long-term
trends in gold prices.

3.5. Analysis of residual correction effectiveness

The core mechanism of the hybrid model is utilizing the ARIMA model to capture linear patterns
within the residuals of LSTM predictions. Figure 7 illustrates the comparison between actual LSTM
prediction residuals and the residuals predicted by the ARIMA model.

Actual Residual vs ARIMA Prediction Residuals
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Figure 7. Comparison of actual residuals and ARIMA-predicted residuals
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In Figure 7, the blue line represents the actual prediction residuals from the LSTM model, while the
red dashed line indicates the residuals predicted by the ARIMA model. It is evident that the ARIMA
model successfully captures the primary trends within the residual series, validating the presence of
predictable linear patterns in the LSTM residuals. This explains why modeling the residuals using
ARIMA can significantly enhance overall forecasting accuracy.

The effectiveness of residual correction is further verified through the analysis of the 20-point
moving average errors (Figure 8).

20Pointwise Moving Average Error
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Figure 8. Comparison of 20-point moving average errors

Figure 8 clearly demonstrates that the moving average error of the standalone LSTM model (blue
line) exhibits an evident upward trend over time. In contrast, the corrected errors from the hybrid
model (orange line) remain consistently stable, closely oscillating around zero without any noticeable
trend. This indicates that the ARIMA component successfully eliminates the systematic biases inherent
in the LSTM predictions.

The analytical results consistently indicate that the LSTM-ARIMA hybrid model effectively
combines the strengths of deep learning and classical time series analysis methods. It successfully
mitigates the limitations associated with the standalone LSTM model in gold price forecasting,
achieving significantly improved prediction accuracy. Consequently, the hybrid model provides a more
reliable quantitative basis for investment decision-making in the gold market.

4. Conclusion

This study proposed a hybrid forecasting model integrating the Long Short-Term Memory (LSTM)
neural network and the Autoregressive Integrated Moving Average (ARIMA) model to improve gold
price prediction accuracy. Leveraging the complementary strengths of these two methodologies, the
hybrid model was designed to effectively capture both nonlinear dependencies and linear
characteristics inherent in gold price time series data.

Empirical analysis based on daily gold price data from August 19, 2013, to November 22, 2024,
demonstrated that the hybrid LSTM-ARIMA model significantly outperforms the standalone LSTM
model across multiple evaluation metrics. Specifically, the hybrid model achieved substantial
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improvements in mean absolute error (MAE), mean squared error (MSE), root mean squared error
(RMSE), mean absolute percentage error (MAPE), and symmetric mean absolute percentage error
(SMAPE), with reductions of 84.92%, 96.81%, 82.14%, 84.60%, and 85.04%, respectively. Moreover,
the determination coefficient (R?) increased notably from 0.596 to 0.987, indicating a superior
explanatory power and predictive capability of the hybrid approach.

Visualization analyses further validated the effectiveness of the hybrid model. Scatter plots
illustrated that predictions from the hybrid model closely aligned with actual values, markedly
reducing deviations observed in standalone LSTM predictions. Time series comparisons revealed that
the hybrid model consistently tracked real gold price fluctuations accurately, effectively correcting the
systematic underestimations inherent in the standalone LSTM model. Additionally, analyses of error
distribution characteristics indicated that the hybrid model significantly decreased error magnitude and
variability, demonstrating stable and precise forecasting performance over time.

The cumulative error analysis highlighted the hybrid model's significant advantage in long-term
forecasting scenarios, effectively mitigating cumulative prediction errors. Residual analysis confirmed
that the ARIMA component successfully captured and corrected linear trends within LSTM residuals,
substantially enhancing overall model performance.

In conclusion, the proposed hybrid LSTM-ARIMA model effectively integrates deep learning’s
ability to model nonlinear complexities with traditional econometric methods' strength in linear
analysis, offering a robust and accurate forecasting tool for gold price prediction. This methodological
innovation significantly improves forecasting accuracy and reliability, providing investors, fund
managers, and policymakers with a more dependable quantitative basis for strategic decision-making
in gold market investments. Future research may explore incorporating additional variables and
alternative deep learning architectures to further refine forecasting precision and adaptability.
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