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Mental health issues, particularly depression, have become a significant challenge
in global public health. Early screening for depression faces difficulties due to the
limitations of subjective diagnostic methods. This study proposes an EEG emotion
recognition system based on the STM32 microcontroller, utilizing deep learning for real-
time, portable mental health monitoring. The system processes EEG signals captured by the
Muse headband using sliding window techniques, combined with time-frequency domain
fusion to enhance emotional feature representation. A convolutional neural network (CNN)
is employed to classify emotions into negative, neutral, and positive categories.
Optimization techniques are applied to adapt the model to resource-constrained embedded
devices, achieving a compression rate of 67.4%. Despite performance trade-offs in
microcontrollers, the optimized CNN model maintains an accuracy of 81% on the STM32
platform, demonstrating the practical value of the system. Cross-platform comparison
analysis shows that microcontrollers exhibit a larger performance gap in more emotionally
polarized categories but still hold potential for edge computing applications. This study
provides a feasible solution for deploying deep learning models on embedded devices,
supporting continuous mental health monitoring in daily life.

Mental health monitoring, EEG emotion recognition, STM32 microcontroller,
Convolutional Neural Network (CNN), Edge computing, Model optimization, Real-time
processing, Wearable devices, Embedded deep learning, Depression detection.

In recent years, mental health problems have become a major public health challenge worldwide.
According to the World Health Organization (WHO) in 2022 [1], the number of people suffering
from depression has reached 300 million worldwide. The organization's experts further predict that
if current trends continue, the total number of people with depression globally could exceed the total
number of people with cardiovascular disease by 2030, and it will become a major global disability
health problem.

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).
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However, early screening faces the twin challenges of difficult identification and high technical
barriers to detection. Traditional diagnostic methods for depression rely on clinicians' subjective
judgment and rating scale assessment of patients' external manifestations [2]. However, there are
limitations to this subjective evaluation model, especially for patients with hidden depression who
deliberately hide their negative emotions [3]. Studies have shown that if a person can become aware
of their mental state, their depressive symptoms will be significantly alleviated [4].

The emergence of deep learning offers the possibility of solving this problem. In recent years, a
variety of neural network algorithms have been applied to the field of emotion recognition and have
shown a wide range of possible applications and advantages due to their powerful data processing
capabilities and pattern recognition advantages [5]. For example, Priyadarshani et al. explored
machine learning classifiers and proposed a high-accuracy EEG-LSTM model that gave better
results than a more basic machine learning model [6]. Ramzan et al. attempted to fuse multiple
classification models and achieved good results on EEG data [7]. However, despite the fact that
EEG emotion recognition research shows great potential for mental health monitoring, most of the
current research still focuses on algorithm optimization and still falls short in terms of device
convenience and intelligent deployment [8]. Huang et al. have begun to consider applications on
resource-constrained portable/wearable (P/W) devices and have conducted research on real-time
EEG signal denoising [9], but the deployment of relevant classification models has not yet been
fully explored.

To address the above challenges, this study constructed an STM32 microcontroller-based EEG
deep learning emotion recognition system to extend depression screening from laboratory settings to
daily life environments. The combined software and hardware microcontroller application makes the
mood recognizer an affordable and convenient device to monitor the user's mood in near real time.

2. Methodology
2.1. Overall framework design

Our study adopts the hybrid framework of a re-processed model and embedded optimization, aiming
to transform the existing CNN-based emotion classification into a lightweight model which can be
deployed on a resource-constrained microcontroller such as the “STM32”. The framework that this
article puts forward is able to process the real-time EEG emotional signal and produce the result in a
very short time.
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Figure 1: Overall processing and training workflow diagram
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2.2. Dataset acquisition

In this work, we used a publicly accessible dataset from GitHub. The dataset consisted of two
participants (one male and one female) who experienced mood swings by watching video clips of
different emotional stimuli.

In the GitHub dataset, trials were conducted using a Muse headband to capture EEG signals from
the subjects, with electrode layouts conforming to the 10-20 system extension criteria. Positive,
neutral, and negative emotions were recorded for a duration of three minutes for each state, while six
minutes of resting neutral data were also recorded.

2.3. Preprocessing

The EEG dataset was denoised and normalized as described in [10] to ensure data quality.
Considering the autocorrelation and temporal properties of EEG, single-point features often do not
provide enough information. To adapt to the subsequent model training, we adopted a sliding
window-based feature extraction method [11] to extract the time and frequency domain features of
the EEG signal. Specifically, under this extraction method, the EEG signal is divided into multiple
consecutive time windows, each containing a 4ms fixed-length signal. With this approach, we are
able to capture the dynamics of the signal over different time periods [12]. In the feature extraction
phase of each time window, signal fluctuation patterns are characterized by time-domain statistical
analysis (including signal maxima, means, and variances), while frequency-domain amplitude
features are extracted using the Fast Fourier Transform to reveal underlying rhythmic patterns in the
signal. This time-frequency domain feature fusion strategy achieves a joint representation of signal
amplitude dynamics and spectral distribution features, which has been shown to significantly
improve the completeness of sentiment features [13,14].

Next, in the feature selection stage, we combined time-domain statistics and frequency-domain
components and selected the 256 most representative features from the original feature space based
on estimated information gain[15]. This processing method effectively alleviates the problem of
feature redundancy while preserving emotion-related physiological patterns. In addition, we use a
feature space reconstruction technique to reorganize the 256 features of each sample into a 16 x 16
matrix, which allows the data to be input into the CNN as images, thus leveraging the power of the
CNN for emotion classification tasks.

2.4. Model adaptation

In this study, considering performance and complexity, we chose to use a convolutional neural
network (CNN) for the emotion recognition task. The model can be trained based on image data
from EEG signals, with features automatically extracted from the images and classified into three
categories. The model reduces unnecessary resource consumption by reducing the parameters and
computations of the corresponding convolutional and fully connected layers while ensuring a certain
level of accuracy. It also uses pooling layers for dimensionality reduction, which reduces the input
size for subsequent layers. The data was split in a 7:3 ratio for training, and the trained model was
saved for subsequent deployment.

2.5. Microcontroller deployment phase

The hardware part selects the STM32F4 series microcontroller, firstly for its computational
capabilities and memory resources, which can fully support the quantized CNN model, and secondly
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for its relatively affordable cost. Communication between the microcontroller and the computer is
established via USB-TTL serial port, enabling real-time transmission of EEG signals.

Software development utilized the CubeMX integrated environment for hardware configuration
and framework construction. Implementation required installation of both the STM32F4 HAL
library and X-CUBE-AI extension package. Our model was developed in Keras, then converted to
TFLite format through TensorFlow to suit embedded deployment requirements.

To address resource constraints, we implemented model lightening through weight quantization
with low compression, reducing memory requirements from 1.17MB to 371KB—a 67.4% reduction.
We also employed activation buffer multiplexing, allowing input and output buffers to share
memory space. The X-CUBE-AI toolchain performed graph optimization and operator fusion,
generating C executable code compliant with CMSI-NN standards, enabling efficient model
execution.

As illustrated in Figure 3, our implementation achieves end-to-end real-time inference through
optimized design. The system performs hardware initialization, loads the lightweight model, and
employs an asynchronous communication protocol where the host sends data frames to the STM32,
which processes them and returns classification results. Our validation experiments confirmed
successful data transmission and prediction reception, with appropriate error handling for timeout
situations.

The system utilized USB-TTL serial communication to establish bidirectional data flow between
the microcontroller and host computer, facilitating real-time EEG data upload and emotion
classification feedback (positive/neutral/negative). Validation employed a two-phase approach: first
testing communication protocols through CubeMX virtual serial port tools, then conducting
hardware-in-the-loop[16] validation by injecting simulated EEG signals into the system. This
process confirmed the complete data-to-decision pipeline functionality. Subsequently, we compared
the classification performance of the PC-side and microcontroller-side using confusion matrices for
further analysis.
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Figure 2: Demonstrates the process of classification of EEG signal based on STM32 and cube Al
2.6. Evaluation metrics

Regarding model optimization and compression, we evaluated aspects such as weight memory and
RAM usage, as detailed in section 3.1. Subsequently, to assess the performance of the CNN model
in classifying three sentiment categories (Negative, Neutral, Positive) and compare the performance
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of computer and microcontroller platforms, we selected the following evaluation metrics: Accuracy,
which reflects the proportion of correctly classified samples relative to the total number of samples;
Precision, which measures the proportion of correctly predicted samples for each category out of all
predictions for that category; Recall, which indicates the ratio of correctly predicted samples to the
total number of true samples in each category; F1-Score, which combines Precision and Recall
through their harmonic mean to comprehensively assess model performance; and Confusion Matrix,
which presents the model’s prediction results for each category in tabular form. Together, these
metrics provide a comprehensive quantitative basis for evaluating the model’s classification
capabilities and the platforms' performance in resource-constrained environments.

2.7. Embedded deployment of core effectiveness

Table 1. Compares the impact of different optimization methods on model resource consumption

Optimization Metric Weight Memory RAM Footprint MACC:s per Inference
Baseline Model 1165.3 KB >128 KB 830,6720perations
Efficient Deployment 379.9KB Flash 29.7KB 830,6720perations (Lossless)
Hardware Constraints 1 MB Flash 128 KB RAM <1M operations/inference
Achievement Ratio 39.5% 23.2% 83.1%

To adapt to the hardware limitations of the STM32F4, the model has been deployed after multi-
strategy optimization. During the runtime phase, the Flash requirement is 379.9 KB, and the RAM
requirement is only 29.7 KB, which account for 39.5% and 23.2% of the STM32F4 hardware
capacity (Flash 1 MB, RAM 128 KB), respectively. Compared to the original model, this represents
effective compression, indicating that these optimizations ensure the model can run on the
microcontroller with low power consumption and high efficiency.

2.8. Classification performance in restricted environments vs. cross-platform model
performance

The results show that the computer has higher precision, recall, and F1 scores across all sentiment
categories. In the Positive and Negative categories, the computer outperforms the microcontroller. In
contrast, the performance gap in the Neutral category is smaller. The confusion matrix on the right
also shows that the microcontroller performs relatively accurately in the Neutral category, with
almost all neutral samples correctly classified as neutral. However, the predictions for the Negative
and Positive categories show some bias, particularly with negative samples being misclassified as
positive. In the Positive category, some predictions are misclassified as Neutral, indicating that the
microcontroller's recognition accuracy decreases to some extent for categories with more
pronounced sentiment polarity.

The overall accuracy of the computer is 0.96, higher than the microcontroller's 0.81, with the gap
mainly stemming from differences in hardware resources and computational power. However,
considering that the microcontroller operates in a resource-constrained embedded environment, it
still achieves an accuracy of 0.81, demonstrating better adaptability, especially in the Neutral
category, where its performance is close to that of the computer. This suggests that despite the
limitations of microcontrollers in complex emotion classification tasks, their performance in edge
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computing scenarios is of practical value, providing feasibility and optimization space for deploying
neural networks on embedded devices.

Comparison of PC and Microcontroller Performance Proportional Confusion Matrix (Microcontroller)

True Label

Negative Neutral Positive
Predicted Label

legative Neutral Positive
Sentiment Classes

Figure 3: Compares the performance of a computer and a microcontroller on an emotion
classification task. The bar chart on the left sequentially compares precision, recall, and F1 score and
the confusion matrix on the right displays the performance on the microcontroller

3. Discussion

This study implemented an EEG-based emotion classification system on the STM32 microcontroller
and encountered several issues worthy of in-depth discussion. Firstly, due to hardware limitations,
we used an online dataset rather than actual data collection. Additionally, the dataset was collected
using Muse headbands in a laboratory environment, which differs significantly from clinical or daily
scenarios. Data collected in a controlled environment lacks the noise interference and signal
variations present in real-world settings, potentially leading to suboptimal model performance in
practical applications. Future research could integrate signal acquisition with subsequent
deployment processes and consider collecting data across different environments, or directly
integrate signal acquisition modules onto microcontrollers to reduce signal distortion caused by
intermediate processes.

When migrating the model from computer platforms to the STM32 microcontroller, there was a
noticeable decrease in classification accuracy. This was primarily due to hardware resource
limitations. Operations such as pruning and quantizing fully connected layers inevitably affected
model performance. Future research should explore more efficient neural network architectures,
such as depth wise separable convolutions or attention mechanisms optimized for low-resource
environments, to enhance feature extraction capabilities while maintaining computational efficiency.

Additionally, during testing, signal transmission faced stability and latency issues. Delays in data
feedback affected the system's ability to accurately reflect instantaneous emotional states. These
issues stem from multiple factors, including data transmission protocols, model inference speed, and
hardware processing capabilities. Although the system essentially achieved functional real-time
emotion reasoning, it struggled to maintain stable performance when processing large volumes of
EEG data. This is particularly critical for applications that require monitoring rapidly changing
emotional states.

4. Conclusion

This study successfully deployed an EEG-based emotion recognition system on an STM32
microcontroller, achieving 0.81 classification accuracy across negative, neutral, and positive
emotional states compared to 0.96 on computer platforms. Through weight quantization and buffer
multiplexing, we reduced memory requirements by 67.4%, enabling efficient operation within the
microcontroller's constraints (39.5% Flash, 23.2% RAM utilization). Despite performance gaps in
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highly polarized emotions, the system's reliable neutral emotion detection demonstrates the
feasibility of embedded deep learning for accessible mental health monitoring. Future improvements
will focus on model optimization and adaptability, advancing EEG-based emotion recognition for
wearable and portable applications.
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