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Abstract. The CRISPR-Cas system plays a pivotal role in bacterial adaptive immunity and
has emerged as cornerstone in gene editing technologies. Accurate identification of Cas
proteins is critical for the discovery novel genome-editing tools, yet traditional sequence
alignment methods often struggle with highly diverse or previously uncharacterized
sequences. In this study, we propose ESMFusion, a high-accuracy framework for Cas
protein identification that integrates both sequence and structural information derived from
large-scale pretrained protein language models. Specifically, we utilize ESM-2 to capture
sequence-level representations , and extract structural embeddings by combining ESMFold
with ESM-3. These heterogeneous features are fused and processed using a multi-scale
convolutional neural network (MSCNN) followed by a multilayer perceptron (MLP)
classifier to achieve robust prediction. Experimental results show that ESMFusion
outperforms traditional machine learning and state-of-the-art deep learning methods,
achieving a classification accuracy of 93.37% on curated benchmark datasets. These
findings underscore the scalability and generalizability of ESMFusion, highlighting its
potential in metagenomic discovery and genome editing research.
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1. Introduction

The CRISPR–Cas system represents the core adaptive immune mechanism in bacteria and archaea.
It functions by capturing and integrating foreign DNA fragments (spacers) into the CRISPR array,
which are then transcribed into CRISPR RNAs (crRNAs) and assembled with Cas proteins to form
interference complexes. These complexes recognize and cleave complementary invading nucleic
acids, thereby providing precise protection against phages and plasmids [1-3]. Since its first
demonstration for genome editing in eukaryotes in 2012, the CRISPR–Cas system has
revolutionized gene therapy, molecular diagnostics, and crop improvement [4-9].

Structurally and functionally, the CRISPR–Cas system comprises two main components: the
CRISPR array, which acts as a “memory” repository of invader sequences [10]; and Cas effector
proteins, which serve as the “execution” machinery for target cleavage [11]. Based on effector
composition, CRISPR–Cas systems are classified into Class 1 (multi-protein effectors) and Class 2
(single-protein effectors). Class 2 effectors such as Cas9 (Type II), Cas12 (Type V), and Cas13
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(Type VI) have been widely adopted for DNA or RNA targeting applications due to their simplicity
and programmability [12-19].

Despite their importance, only a limited number of Cas proteins have been reliably annotated,
and the diversity of naturally occurring Cas variants in microbial genomes far exceeds current
annotations. Many novel Cas proteins exhibit substantial sequence divergence from known families,
leading to poor sensitivity of traditional sequence-alignment tools (e.g., BLAST, HMMER) against
these divergent variants [20,21]. For example, multiple novel CasX/CasY systems identified in
environmental metagenomes were often missed by standard alignment methods due to low sequence
similarity [22]; similarly, newly discovered Class 2 systems from uncultivated microbes showed
markedly reduced detection rates with HMMER-based searches [23]. Moreover, evolutionary
analyses have highlighted that the rapid emergence of new Cas subtypes outpaces template-based
alignment approaches [24]. Consequently, there is a pressing need for intelligent algorithms that
jointly leverage sequence and structural information for accurate Cas protein identification.

Recent advances in protein language models (e.g., ESM, ProtBERT, TAPE) have demonstrated
powerful capability in capturing sequence semantics and inferring structural and functional
properties. Notably, ESM-2 performs large-scale unsupervised sequence modeling [25]; ESMFold
uses ESM-2 latent representations to predict protein structures directly [26]; and ESM-3 further
integrates structural information into the training process to achieve joint sequence–structure
representation learning [27]. These developments open new avenues for multi-modal protein
analysis.

In this work, we introduce ESMFusion, a multi-modal deep learning framework for high-
accuracy Cas protein identification. ESMFusion integrates sequence embeddings derived from
ESM-2 with structural embeddings obtained from ESMFold and ESM-3, combining them into a
unified representation. A Multi-Scale Convolutional Neural Network (MSCNN) is employed to
capture both local and global feature patterns, followed by a multilayer perceptron (MLP) classifier
for final prediction. Comprehensive comparative experiments demonstrate that ESMFusion
substantially outperforms traditional and single-modality baselines, achieving a classification
accuracy of 93.37% on curated datasets.

2. Materials and methods

2.1. Overall framework of ESMFusion

As illustrated in Figures 1–3, ESMFusion comprises three main components: dataset construction,
feature representation, and classification. First (Figure 1), we curated a comprehensive benchmark
dataset comprising diverse Cas and non-Cas protein sequences to support robust model training and
evaluation. Special attention was paid to ensuring representative sequence diversity while
minimizing redundancy. Next (Figure 2), protein representations were extracted from both sequence
and structural modalities. For sequence encoding, we utilized the pretrained ESM-2 (650M) model
and applied mean pooling over the final hidden layer to obtain a 1280-dimensional feature vector.
For structural encoding, the protein’s 3D structure was first predicted using ESMFold, and
embeddings were then generated using ESM-3, yielding a 1536-dimensional vector. These two
representations were concatenated to form a unified 2816-dimensional feature vector. Finally
(Figure 3), the concatenated embedding was fed into a multi-scale convolutional neural network
(MSCNN) composed of multiple parallel one-dimensional convolutional branches with varying
kernel sizes to capture multi-scale semantic patterns. The outputs were pooled, concatenated, and
flattened into a single vector, which was passed through a two-layer fully connected neural network.
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A sigmoid activation function was applied to produce the final binary prediction, indicating whether
the input corresponds to a Cas or non-Cas protein.

Figure 1: Dataset construction process

Figure 2: Feature representation pipeline

Figure 3: Classification framework

2.2. Dataset introduction

To establish a robust and dependable predictive framework, we constructed a curated benchmark
dataset for model training and performance evaluation. Initially, Cas protein sequences were
retrieved from the UniProt [28] database using the keyword “CRISPR-associated,” and only
manually reviewed entries were retained as the preliminary positive set. To mitigate sequence
redundancy and avoid overfitting, we applied CD-HIT [29] with a 70% sequence identity cutoff,
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retaining a single representative protein from each cluster. This process yielded a final positive
dataset consisting of 209 non-redundant Cas protein sequences.

For the negative class, we randomly selected 209 manually reviewed non-Cas protein sequences
based on a previously published study [30]. Sequences containing non-standard amino acid residues
(such as ‘X’, ‘B’, or ‘Z’) were excluded, and CD-HIT was again applied to eliminate sequences with
more than 40% internal similarity. Furthermore, to ensure that no negative sample shared more than
70% sequence identity with any positive sample, the entire dataset underwent an additional round of
clustering at the 70% threshold. This procedure ensured that both positive and negative sets were
free from excessive homology.

The final dataset was split into two subsets: a training set (Cas300) and an independent test set
(Cas118). Cas300 consisted of 150 Cas and 150 non-Cas proteins, while Cas118 included 59
proteins for each class, facilitating reliable model evaluation on unseen data.

2.3. Traditional single descriptors

To systematically characterize protein sequences, We employed nine representative single-feature
descriptors from the iLearnPlus toolkit [31], categorized into three types: composition-based,
physicochemical property-based, and sequence-order-based features.

2.3.1. Composition-based features

Amino Acid Composition (AAC) [32] captures the frequency of each amino acid, providing a global
view of sequence content. CKSAAP [33] encodes the frequency of amino acid pairs separated by k
residues (k = 3 in this study), reflecting local residue co-occurrence.

2.3.2. Physicochemical property-based features

PAAC incorporates physicochemical properties and sequence order into AAC. APAAC extends
PAAC by including amphiphilic attributes such as hydrophobicity and polarity, enhancing functional
representation.

2.3.3. Sequence-order-based features

Normalized Moreau–Broto Autocorrelation (NMBroto) calculates autocorrelation values based on
physicochemical indices, highlighting long-range residue interactions. CTDC and CTDT [34] group
amino acids by specific properties and compute their composition and transition frequencies across
the sequence. Quasi-Sequence Order (QSOrder) [35] integrates sequence-order effects with
property-based distances between residues. Adaptive Skip Dipeptide Composition (ASDC) [36]
extends dipeptide encoding by including non-adjacent residue pairs, improving representation of
distant correlations relevant to structural context.

3. Result

3.1. Performance comparison of traditional single descriptors

To assess the classification performance of traditional handcrafted features in Cas protein
identification, we evaluated nine representative single-feature descriptors introduced in Section 2.3
on the Cas300. Each descriptor was used to encode the sequences and fed into an identical
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classification model to ensure a fair comparison. Classification accuracy was employed as the
primary evaluation metric.

As illustrated in Figure 4, descriptors based on physicochemical properties—PAAC and APAAC
—achieved relatively high performance, both exceeding 75% accuracy. In contrast, composition-
based descriptors (AAC and CKSAAP) produced moderate results, with accuracies around 70%.
Sequence-order-based descriptors, such as CTDC, CTDT, and NMBroto, generally underperformed,
with accuracies falling below 70% in most cases.

Figure 4: Accuracy of different traditional feature descriptors

3.2. Performance comparison of ESM-2 models with different scales

In this experiment, we evaluated the performance of four different scales of ESM-2 (8M, 35M,
150M, and 650M) in generating sequence embeddings and performing Cas protein classification
tasks.

To better understand the impact of model size on classification performance, we first applied
UMAP (Uniform Manifold Approximation and Projection) to reduce the dimensionality of the
positive and negative sequence embeddings generated by each model. As shown in Figure 5, the
UMAP results reveal a clear trend: with the increase in model size, the distinction between positive
and negative samples becomes more apparent. This suggests that larger ESM-2 models are capable
of capturing more complex and subtle patterns in protein sequences, contributing to more robust
classification performance.
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Figure 5: UMAP visualization of sequence embeddings from different ESM-2 models

Next, we assessed the classification accuracy of each model on the Cas300 dataset, which
contains both Cas and non-Cas protein samples. As shown in the results in Figure 6, the
classification accuracy significantly improved with the increase in model parameters. Specifically,
ESM-2 (8M) model, the smallest in terms of parameters, achieved the lowest accuracy at only
67.80%. This indicates that the model's capacity is limited, preventing it from capturing the complex
features within the sequence data. ESM-2 (35M) and ESM-2 (150M) models showed similar
performance, with accuracy rates of 77.12% and 76.27%, respectively. Although these models
performed better than ESM-2 (8M), their accuracies still did not exceed 80%, suggesting that
medium-scale models have certain limitations in classification performance.

In contrast, ESM-2 (650M) model outperformed the others, achieving an accuracy of 83.90%,
significantly higher than the other three models. This result indicates that larger ESM-2 models are
better at capturing subtle relationships within protein sequences, leading to a significant
improvement in classification performance. Given the outstanding performance of ESM-2 (650M)
model in the classification task, we decided to use this model for subsequent experiments to further
validate the advantages of large-scale pre-trained models in Cas protein classification.
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Figure 6: Classification accuracy of different ESM-2 models

3.3. Comparison of different models for cas protein classification performance

In this experiment, we evaluated the performance of various models in the Cas protein classification
task, including the original ESM-2, fine-tuned ESM-2, ESM-3, CASPredict, CRISPRCasStack, and
our proposed ESMFusion model. The objective of this experiment was to assess the classification
accuracy of different model architectures and analyze the advantages and limitations of each model
in the Cas protein classification task.

The classification accuracies of the models are shown in Figure 7. The results are as follows: the
original ESM-2 model achieved an accuracy of 83.90%, demonstrating relatively good performance.
The ESM-3 model slightly outperformed ESM-2, with an accuracy of 84.75%. The fine-tuned ESM-
2 model achieved an accuracy of 72.08%, indicating that while fine-tuning can optimize the model
for a specific task, its performance was not as good as the original pre-trained ESM-2 model. The
CASPredict [30], specifically designed for CRISPR-Cas classification, achieved an accuracy of
84.84%, slightly higher than ESM-3. As the current state-of-the-art model for Cas protein prediction,
CRISPRCasStack [37] achieved the highest accuracy of 94.07%, outperforming all other models.
ESMFusion, which combines the outputs of ESM-2 and ESM-3, achieved an accuracy of 89.14%.
Although this result shows a significant improvement over single models, it still falls short of
CRISPRCasStack.

Figure 7: Classification accuracy of different models
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The results of this experiment demonstrate that combining multiple models and integrating
sequence and structural information can significantly enhance classification accuracy. While
CRISPRCasStack exhibited the highest accuracy, ESMFusion model also showed strong
classification performance, achieving an accuracy of 89.14%, which is superior to the single ESM-2
and ESM-3. However, it is still slightly lower than CRISPRCasStack, indicating that task-specific
optimized models continue to have a certain advantage in performance.

3.4. Improvement of ESMFusion with MSCNN for cas protein classification

In this experiment, we further enhanced the performance of ESMFusion model by incorporating
MSCNN to better capture multi-scale feature representations. The addition of MSCNN allows the
model to extract hierarchical and multi-resolution patterns from the protein sequence embeddings,
which has been shown to improve the classification accuracy.

As described in the previous experiments, the baseline ESMFusion model, which combines the
outputs from both ESM-2 and ESM-3 models, achieved a classification accuracy of 89.14%.
However, by introducing MSCNN, which utilizes multiple convolutional kernels of different sizes to
capture both local and global features, we observed a significant improvement in the model's
performance.

The MSCNN architecture consists of three convolutional layers with kernel sizes of 3, 5, and 7,
followed by max-pooling operations to reduce dimensionality. The multi-scale features are then
concatenated and passed through a MLP for final classification. This architecture is designed to
extract multi-scale information from protein sequence embeddings and provide more nuanced
feature representations for classification.

After integrating MSCNN into ESMFusion, we re-evaluated its classification accuracy on the
Cas300. As shown in Figure 8, the accuracy increased to 93.37%, which is comparable to the
performance of the CRISPRCasStack (94.07%), the current state-of-the-art method for Cas protein
classification. This improvement demonstrates the effectiveness of multi-scale feature extraction in
enhancing classification accuracy, making the MSCNN-augmented ESMFusion model a strong
contender for Cas protein classification tasks.

Figure 8: Effect of MSCNN integration on the accuracy of ESMFusion

These findings highlight the importance of incorporating multi-scale convolutional techniques
into large pre-trained models for protein sequence classification. The MSCNN's ability to capture
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fine-grained patterns across different scales helps the model generalize better to complex biological
data, ultimately achieving near-state-of-the-art performance.

4. Disscussion

In this study, we proposed ESMFusion, a multimodal deep learning framework that integrates
protein sequence and structural information for high-precision Cas protein classification. By
combining embeddings from ESM-2, ESMFold, and ESM-3, and enhancing them via a Multi-Scale
CNN, ESMFusion effectively captures both global and local biological features.

We first evaluated ESM-2 of varying scales, with the 650M model showing the best performance
(83.90%) and serving as our baseline. Comparative experiments demonstrated that ESMFusion
(89.14%) outperformed single-modality and existing methods. Adding MSCNN further boosted
accuracy to 93.37%, matching state-of-the-art tools like CRISPRCasStack.

In summary, ESMFusion shows strong generalization ability and classification performance on
the Cas protein prediction task. The experimental results highlight the effectiveness of integrating
multimodal biological features, and the proposed approach provides new insights and methodologies
for future protein function prediction tasks based on pretrained models. In future work, we plan to
incorporate additional structural predictors, explore graph neural networks, and conduct cross-
species generalization studies to further improve the robustness and biological interpretability of the
model.
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