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Abstract. Since its proposal in 2017, the Transformer model has achieved revolutionary
breakthroughs in natural language processing and even in computer vision tasks. However,
its huge number of parameters and high computational complexity have posed substantial
difficulties in training and inference efficiency, model knowledge updating, and multimodal
information fusion. This paper reviews recent research progress on Transformer
optimization techniques, including: (1) Structural optimization and computational efficiency
– model architecture improvements, pruning compression, and efficient attention
mechanisms to reduce computational cost; (2) Parameter-efficient fine-tuning and task
adaptation – new fine-tuning methods with high parameter efficiency, as well as few-shot
and zero-shot learning paradigms, to improve adaptability in low-resource and multi-task
scenarios; (3) External knowledge integration – incorporating knowledge graphs, retrieval-
based external memory, etc., into Transformers to fill knowledge gaps and enhance
commonsense reasoning; (4) Multimodal fusion – designing cross-modal Transformer
architectures and alignment mechanisms to effectively fuse information from modalities
such as vision and language. Analyze representative methods, underlying principles, and
experimental results for each direction, discuss the main challenges, and predict forthcoming
research directions, such as unified efficient attention theories, trustworthy knowledge
injection mechanisms, green AI training strategies, and next-generation interpretable
Transformer architectures.
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1. Introduction

Since Vaswani et al. introduced the Transformer architecture in the landmark paper "Attention Is All
You Need" [1], Transformer models have fundamentally transformed AI research. By exclusively
depending on self-attention, Transformers removed the sequential dependency of RNNs and enabled
highly parallelizable training, leading to breakthrough results in machine translation and other
sequence modeling tasks. In the past few years, Transformers have rapidly scaled from the original
model (~65 million parameters) to extremely large models with hundreds of billions of parameters
(e.g., GPT-3 with 175 billion [2]) and even trillion-scale models (e.g., Google's Switch Transformer
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with 1.6 trillion parameters using sparse expert mixing [3].)This scaling has driven paradigm shifts
in natural language processing (NLP) and even computer vision, as seen in Vision Transformer
(ViT), which applies Transformers to image patches and rivaled convolutional networks [4].]At the
same time, these massive models exhibit impressive capabilities (e.g., GPT-3 demonstrating strong
few-shot learning), but their size and complexity also bring huge computational costs and make
deployment on real-time or resource-constrained systems very difficult. In addition, Transformers
pre-trained on static corpora have "common sense blind spots" and factual obsolescence – they may
lack knowledge not present in training data or struggle to update with new facts. Integrating multiple
modalities (text, images, speech, etc.) into one Transformer is also challenging, due to the need to
align heterogeneous features and balance learning objectives across modalities. All these issues limit
the broader application of Transformers. To tackle these issues, the research community and industry
have proposed a variety of innovative Transformer optimization techniques. Several surveys have
reviewed the evolution of Transformer models. For instance, Lin et al [5]. systematically
summarized improvements of various "X-former" variants in architecture, pre-training, and
applications, and proposed a new taxonomy of Transformer models. yTay et al [6]. focused on
efficient Transformers, surveying approaches such as Reformer, Linformer, Performer, Longformer,
etc., that reduce computational and memory complexity. Xu et al [7]. reviewed Transformer-based
multimodal learning techniques and challenges. Compared to existing surveys, this paper centers on
a range of optimization strategies for Transformers from improving computational efficiency to
knowledge acquisition and multimodal expansion. The author discusses multiple aspects including
model structure, training and fine-tuning, external knowledge injection, and multimodal fusion. The
author not only reviews the principles of representative methods in each area, but also summarizes
their experimental performance on typical tasks, in order to give a complete and in-depth
understanding of Transformer optimization techniques. The remainder of this paper is organized into
four main sections covering structural optimizations, parameter-efficient tuning, knowledge
integration, and multimodal fusion, followed by a conclusion with a future outlook.

2. Structural optimization and computational efficiency

The powerful expressiveness of Transformers comes at the price of high computational cost. self-
attention mechanism has quadratic O(n²) complexity in sequence length, and model size grows
substantially with more layers and larger hidden dimensions. processing long texts or high-
resolution images can thus be very inefficient, and training large-scale models demands enormous
computing power and energy. To mitigate these issues, a great deal of research has focused on
optimizing Transformer architectures and improving computational efficiency, by cutting redundant
computation and approximating the expensive components. In general, efforts in this area can be
grouped into three aspects: model compression, efficient attention mechanisms, and
training/inference optimization.

Model Compression and Pruning: Large Transformers often contain substantial parameter
redundancy. Pruning and quantization are classic compression techniques to reduce model size.
Pruning removes weights or even entire structures that have minimal impact on model performance
(e.g., unstructured weight pruning, or structured pruning of attention heads, neurons, or whole
layers).ang et al. conducted a comprehensive survey of static and dynamic pruning algorithms and
showed that low-bit quantization can significantly shrink model size and speed up inference while
maintaining accuracy [8]. For example, BERT models can prune 40–90% of parameters with usually
under 5% performance drop [8]. Furthermore, knowledge distillation compresses models by having
a small student model learn to mimic a large teacher Transformer. For instance, DistilBERT was
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distilled from BERT and achieves ~97% of BERT's performance with only half the number of
parameters [9]. Another approach is parameter sharing – ALBERT ties weights across layers to
greatly reduce parameters while retaining performance comparable to BERT [10]. By combining
pruning, quantization, distillation, and parameter sharing, researchers have managed to create
lightweight Transformers that can be deployed on resource-constrained devices (e.g., mobile and
edge computing) without drastic loss of capability.

Lightweight architecture improvement: In addition to compressing the existing model,
researchers have also proposed an alternative Transformer architecture with higher parameter
efficiency or computational efficiency. For example: (1) General-purpose transformers adopt a
cyclic mechanism to share parameters across depths, effectively reducing model parameters and
achieving adaptive computing time [11]. (2) Transformer-XL introduces segment-level recursion to
capture remote dependencies outside the fixed window and reuse hidden states to improve efficiency
[12]. (3) For visual tasks, hierarchical transformers such as Swin Transformer use patch merging
(down sampling) layers to reduce spatial resolution. Increasing depth significantly reduces the
computational load of subsequent layers [13]. These architectural modifications have improved
efficiency while retaining (or even enhancing) the model performance in their respective fields.

Effective attention mechanism: The secondary cost of complete self-attention in long sequences
has stimulated a large number of methods to improve the efficiency of attention. The research has
determined the characteristics of the attention matrix that can be utilized (locality, sparsity, low-rank
structure, etc.). Overall, three methods have been explored:

Structured sparse attention: Use a fixed pattern to limit the attention range of each token.
Examples include a sparse transformer with predefined stride patterns [14], a Longformer that uses a
local sliding window (for example, a window size of 512) along with some global tokens [15], and a
Big Bird that combines local, random, and global attention and has been proven to be approximately
full attention [16]. These methods reduce the complexity to linear or O(n·w), where w is the window
size.

Dynamic sparse attention: Allowing the model to learn sparse patterns or group tokens
dynamically. Reformer uses locality-sensitive hashing to bucket similar tokens and only attends
within buckets, greatly lowering memory usage [17]. Routing Transformer performs k means
clustering of tokens and restricts attention to tokens in the same cluster [18]. Sinkhorn Transformer
learns to reorder sequences via differentiable sorting and then apply block-sparse attention [19].
Such methods achieve sparsity adaptively based on content.

Low-rank and approximate attention: Approximating the full attention matrix with lower
dimensional structures. Linformer projects sequences into a lower-dimensional representation to
achieve linear time attention [20]. Performer uses random feature mappings to approximate the
SoftMax kernel, providing linear complexity with theoretical error bounds [21]. These approaches
leverage the low-rank nature of attention matrices to speed up computation.

By incorporating these efficient attention mechanisms, Transformers can handle much longer
sequences or higher-resolution inputs with reduced time and space complexity. In addition, a range
of training optimization strategies have been proposed (often in conjunction with the above): for
example, gradient checkpointing and memory optimization to enable training larger models on
limited hardware, mixed-precision and distributed pipeline parallelism to accelerate training, and at
inference time techniques like 8-bit or 4-bit quantization, knowledge distillation to smaller student
models, and input length truncation to lower latency. Recent studies show that end-to-end
optimization across data, models, and systems can dramatically improve efficiency, bringing us
closer to green AI training and deployment.
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3. Parameter-efficient fine-tuning and task adaptation

Pre-trained Transformers are typically fine-tuned for downstream tasks by updating all their
parameters, which becomes impractical for extremely large models. This has led to research in
parameter-efficient fine-tuning (PEFT) techniques that adapt a model to new tasks with only a
small fraction of parameters updated. Such methods aim to retain the full model’s knowledge and
capacity while avoiding the cost of full fine-tuning for each task.

One line of work adds small adapter modules to the Transformer and leaves the original weights
mostly frozen. For example, Houlsby et al. introduced adapter layers between Transformer
sublayers, with only the adapter parameters being trained for each task. Adapter-based methods have
proven effective in multi-task and cross-lingual scenarios: by keeping the large pre-trained model
shared across tasks and only learning task-specific adapters, they enable efficient fine-tuning and
storage of multiple task models. AdapterDrop further improves adapter efficiency by dropping
certain adapters during training/ inference to trade off performance and speed [24]. These
approaches achieve performance on par with full fine-tuning in many cases while updating far fewer
parameters.

Another direction exploits the low-rank properties of parameter updates. LoRA (Low-Rank
Adaptation) injects trainable low-rank matrices into each layer’s weights and keeps the main
weights fixed [22]. Despite updating only, a tiny percentage of parameters (e.g. 0.1%), LoRA has
shown that on NLP tasks its fine-tuned models can match the accuracy of full-model fine-tuning,
while being much more parameter efficient. Similarly, BitFit proposes to only fine-tune the bias
terms of the Transformer [23]. Remarkably, BitFit can achieve nearly the same performance as full
fine-tuning on medium-sized datasets, although on some data-rich tasks it is slightly lower – a gap
that can often be closed by combining it with other techniques.

Prefix- or prompt-tuning offers a parameter-free alternative to conventional fine-tuning: the
model stays frozen and learns only a short, continuous prompt that conditions it on a new task. Li &
Liang [25]. showed that a small prompt vector can steer GPT-3 to new tasks with no weight updates
Across benchmarks, parameter-efficient methods rival full fine-tuning: LoRA matches GLUE scores
while training orders of magnitude fewer weights [22]; adapters support cross-lingual or continual
learning by slotting tiny task modules into the backbone; and BitFit, which tweaks merely ~0.1 % of
parameters, often suffices, with minor gaps recoverable by hybrid schemes [23]. Such lightweight
tuning means a handset can download only a prompt or adapter to customize a large model, and a
cloud service can host one shared backbone plus many small heads, drastically cutting storage and
update costs while retaining state-of-the-art performance.

4. External knowledge integration

Despite training on massive text corpora, Transformers can still struggle with facts and
commonsense knowledge that were never seen or not memorized during training. The model’s
knowledge is also static once training is done, making it hard to update with new information. To
address these limitations, researchers have explored methods to integrate external knowledge
sources into Transformers, with the goal of equipping models with knowledge beyond what is in
their frozen parameters and improving their reasoning accuracy and credibility.

Knowledge-graph injection. K-BERT expands inputs with retrieved KG triples and uses soft
positional masks to limit interference, improving medical and financial QA over a plain BERT [26].
K-Adapter freezes the backbone and trains parallel adapter modules—e.g., factual (Wikidata) or
linguistic (dependency parse)—that plug into each layer; combining adapters yields further gains on
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relation classification, entity typing and QA [27]. Overall, adding knowledge graphs gives the model
extra context, helping it track complex connections between entities that regular memory might
overlook.

Knowledge-enhanced pre-training. Baidu’s ERNIE augments BERT objectives with
entity/relation prediction to unify text and KG representations [28], while KnowBERT inserts an
entity-embedding layer and is jointly trained for language modeling and entity linking [29]. Such
methods “bake in” a slice of external knowledge, lifting QA and disambiguation versus vanilla
BERT. A survey by Hu et al. shows that effective knowledge infusion must match source type and
architecture; simply adding extra pre-training tasks rarely suffices [30]. Tailored fusion modules—
adapters, graph nets, or retrieval links—are often required.

Retrieval-augmented models. Instead of embedding facts in parameters, REALM jointly trains
a Transformer and differentiable retriever that fetches helpful passages during masked-LM pre-
training, boosting open-domain QA by 4-16 points [31]. RAG couples a BART generator with a
dense retriever; answers are conditioned on retrieved passages, producing verifiable long-form
responses [32]. Retrieval thus gives a live, updatable memory without retraining the model.

External memory. Recent work equips Transformers with writable memories. Agents can store
salient observations during reinforcement learning and re-attend to them later; MemGPT logs
dialogue notes to external memory, effectively extending the context window for long conversations.
Such memories let knowledge evolve within a session and mitigate forgetting.

Summary. Injecting knowledge graphs, using retrieval, or adding memory all improve factuality
and reasoning depth, overcoming limits of static, data-only pre-training. The open challenge is
trustworthy use: models must judge source reliability, resolve conflicts, and expose uncertainty.
Current research therefore explores credibility metrics, misinformation filters, and evidence-aware
generation—critical steps toward dependable, knowledge-rich Transformers.

5. Multimodal fusion

Transformers, first designed for text, now underpin multimodal systems that must fuse
heterogeneous signals while enabling cross-modal reasoning. Early vision–language models adopted
a dual-stream design: ViLBERT and LXMERT run separate Transformer encoders over image
regions and text, then exchange information through stacked cross-attention, achieving strong
Visual-Question-Answering (VQA) and captioning scores by aligning objects with words [33,34].

Later work shifted to single-stream fusion. UNITER concatenates visual and textual tokens
into one sequence and applies ordinary self-attention over the joint input, slightly outperforming
dual-stream baselines on image–text retrieval and VQA while using a simpler architecture [35].

Model–scale success depends heavily on large-scale multimodal pre-training. VinVL enlarged
pre-training corpora and improved object detection to learn richer visual vocabularies, setting state-
of-the-art results on several benchmarks [36]. OpenAI’s CLIP used contrastive learning on 400 M
image–text pairs scraped from the web, producing a shared embedding space that enables zero-shot
ImageNet classification at ResNet-50 accuracy without task-specific fine-tuning [37]. BLIP mixes
discriminative (retrieval) and generative (captioning, VQA) objectives in a single framework,
yielding strong generalization across understanding and generation tasks [38].

Research is now pursuing unified multimodal Transformers that process more than two
modalities in one backbone. Meta-AI’s FLAVA trains on images, text, and paired data; modality-
type embeddings let a single encoder act as image-only, text-only, or jointly multimodal, and it
delivers competitive results across diverse tasks [39]. Google’s Perceiver and Perceiver IO go
further, treating images, audio, point clouds, and text as generic sequences projected into a latent
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array processed by cross-attention, matching or surpassing specialized models in each domain [40].
Such architectures foreshadow a single foundation model capable of unified reasoning over multi-
sensory input.

Challenges remain, Efficiently scaling to long videos or high-resolution 3-D scenes requires
hybrid attention or sparse computation while robust cross-modal alignment still demands curated
data or auxiliary supervision. Web-scale pre-training, as in CLIP, introduces noise and bias, so
ensuring that learned semantics are reliable—not spurious correlations—remains an active area.
Nevertheless, multimodal Transformers have already overtaken bespoke systems in captioning,
VQA, retrieval, and entailment, grounding fine-grained correspondences between pixels and words.
With continuous progress in unified architectures, data curation, and efficient attention, they are set
to become for multimodal AI what BERT and GPT are for NLP.

6. Conclusion

Transformer optimization remains a vibrant and crucial area of research as researchers push the
limits of model size, efficiency, and applicability. In this survey, the author reviewed advances
ranging from architectural tweaks for computational efficiency to new fine-tuning methods,
knowledge integration techniques, and multimodal model designs. These innovations have
substantially improved the practicality and performance of Transformer models: modern
Transformers can run faster, adapt with fewer parameters, access external knowledge, and handle
multiple modalities, compared to their initial incarnation.

However, several challenges and open questions persist, pointing to promising future directions:
Unified Efficient Attention Theory: There is ongoing work to develop a unified theoretical

framework for efficient attention mechanisms. Most current efficient Transformers are designed case
by case (sparse patterns, low-rank approximations, etc.). A deeper understanding of why attention
matrices are sparse or low-rank in practice could lead to a general solution that adapts to different
data characteristics. The goal is to maintain full attention quality with significantly lower complexity
in a theoretically grounded way.

Trustworthy Knowledge Injection: Future research will explore techniques for validating and
updating the knowledge that a model uses, handling conflicts between model predictions and
external facts, and enabling models to explain which knowledge was used for a given prediction.
Developing trustworthy and interpretable knowledge integration mechanisms (potentially with
symbolic reasoning components or neurosymbolic hybrids) is an exciting avenue.

Green and Sustainable Training: The trend of ever larger Transformers raises concerns about
energy consumption and carbon footprint. There is a growing movement toward “green AI” finding
ways to achieve comparable performance with less data and compute. Future optimizations may
include smarter pre-training curricula, model recycling and compression techniques, federated or
distributed training strategies that minimize redundancy, and hardware software co-design (such as
leveraging new accelerators or sparsity support). The aim is to enable training next-generation
Transformers in a more resource-efficient and environmentally friendly manner.

Next-Generation Interpretability: Large Transformers often act as black boxes. Building on
optimization techniques, future models might incorporate architecture changes that improve
interpretability (for example, modules that explicitly model causal relationships or logic, which
could be inspected). Research on probing attention and attributions will continue, but there may also
be architectural innovations that make Transformers more inherently transparent without sacrificing
performance.
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In conclusion, the evolution of Transformer optimization is far from over. Each of the areas
discussed efficiency, parameter tuning, knowledge, multimodality – continues to be actively
researched, and breakthroughs in one area often complement others. By combining efficient
architectures, adaptive fine tuning, external knowledge, and multimodal understanding, we are
moving toward Transformer-based AI systems that are not only powerful and general, but also
efficient, adaptable, and knowledgeable. Such systems hold the promise of widespread deployment
across domains, from tiny embedded devices to comprehensive multi-modal assistants. The
challenges are significant, but the rapid progress to date gives reason to be optimistic that the
Transformer will continue to be the workhorse of AI, increasingly optimized to meet both our
practical constraints and ambitious goals.
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