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Traffic sign recognition is a critical component in the field of autonomous driving.
In practice, recognising a wide range of different symbol classes with very high accuracy,
robust performance, and rapid processing speed is essential. Traffic signs are designed for
human readability, however, for computer systems, classifying traffic signs remains a
complex pattern recognition problem. Image processing and machine learning algorithms
are continually improving to improve this capability. Among them, deep-reinforcement
learning (DRL) has become a cutting-edge technology that excels in feature extraction and
offers practical solutions for various object recognition challenges. This article has four
major contributions: firstly, we integrate CSO and AGA in traffic sign recognition, achieving
highly favourable results. Secondly, we refine parameters, reducing training time while
improving accuracy from 96.44% to 97.97%. Thirdly, we utilise multiple publicly available
traffic sign datasets from various countries and regions to train our model, which achieves
high accuracy and demonstrates strong robustness. Finally, we combines CSO for data
filtering and training with AGA algorithm to improve both accuracy and efficiency. Overall,
our analysis underscores the effectiveness of our proposed technology, highlights its
potential in achieving precise traffic sign recognition, and positions it as a viable solution for
real-time applications in autonomous systems.

DRL, AGA, CSO, Traffic sign recognition, Object Classification.

In recent years, the rapid development of autonomous driving technology has increased the demand
for powerful Traffic Sign Recognition systems. As a core component of Advanced Driver Assistance
Systems (ADAS), traffic sign recognition ensures road safety by providing real-time guidance for
both drivers and autonomous vehicles. This paper addresses these demands from three critical
dimensions: accuracy, robustness, and computational efficiency.

Firstly, we focus on accuracy, which determines whether we can accurately identify various types
of signs and obtain the information contained therein. This is crucial for reducing misjudgements
and preventing traffic accidents. In the process of feature selection and model training, excessive
computational resources are often easily consumed, leading to a significant increase in
computational costs associated with achieving high accuracy [1-4].

© 2025 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
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Furthermore, we focus on robustness, as ensuring reliable recognition capability is essential for
traffic sign recognition in various complex real-world environments. Traditional computer vision
methods, such as template matching and support vector machines, rely on manual feature extraction
and have limited adaptability to complex scenes, often resulting in poor robustness and lower
accuracy in complex environments [5-8].

Additionally, we also emphasise computational efficiency. While Deep Reinforcement Learning
(DRL) performs well in object classification tasks, it may encounter gradient vanishing problems in
deep networks, impacting training effectiveness. Furthermore, DRL may suffer from suboptimal
training performance due to insufficient dataset diversity.

In the past, traditional DRL algorithms have conducted extensive research on similar problems
and achieved certain results. However, they are also face various challenges. To address these
challenges, we explored multiple approaches and concluded that CSO and AGA form an effective
combination.

CSO is a group intelligence based optimisation algorithm that updates the position and velocity
of particles through a competition mechanism. Its advantages include powerful global search
capabilities and high convergence speeds, effectively avoiding local optimal solutions. Compared
with conventional particle swarm optimisation (PSO), CSO is well-suited for feature selection and
optimisation in high dimensional data, demonstrating excellent performance in large-scale
optimisation problems.

AGA dynamically adjusts crossover and mutation rates to enhance algorithm adaptability and
search efficiency. Its strong global search function and high convergence accuracy enable the
discovery of optimal solutions in complex search spaces. Compared with traditional genetic
algorithms, AGA excels in pattern recognition and optimisation design, achieving impressive
performance in multimodal optimisation problems.

Conventional DRL, compared to CSO and AGA, offers great advantages in processing high-
dimensional data and complex optimisation problems. However, DRL algorithms usually require
large amounts of training data and computational resources. However, CSO and AGA leverage
group intelligence and evolutionary mechanisms to explore solution spaces more efficiently and
identify optimal global solutions [9-11].

AGA and CSO combine their separate advantages, enabling improvements in the performance of
the optimisation algorithm. AGA provides robust global search capabilities and high convergence
accuracy, while CSO improves search efficiency through conflict mechanisms, effectively avoiding
local optimality. This synergy makes them highly suitable for feature selection, pattern recognition,
and automatic operation, demonstrating exceptional performance in complex optimisation problems.

We summarise our contributions as follows:

1. To the best of our knowledge, we are the first to combine CSO and AGA on traffic sign
recognition. We applied CSO for feature filtering first, followed by AGA to train the model.

2. By adjusting training parameters such as epochs and batch sizes (based on previous
methodologies for signage recognition), we achieved an accuracy rate of 97.973%.

3. We leveraged the advantages of residual networks, ensuring reliable performance by replacing
the multivariate training set, which demonstrated strong robustness.

4. We reduced computational time by approximately 20% through optimising training parameters
such as filters.
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There have been numerous studies on traffic signs using traditional DRL algorithms, which have
achieved significant results. However, they still face various problems such as robustness, accuracy,
and computational efficiency [6-9,12].

1. CNN-based traffic sign recognition systems exhibit limited robustness under varying lighting
conditions, resulting in reduced accuracy [6].

2. Research has explored the use of Support Vector Machines (SVM) and image segmentation for
traffic sign classification, yet it does not address the computational inefficiencies and high resource
demands of CNNs, which pose a significant drawback in real-time applications [7].

3. Some studies highlight that the accuracy in traffic sign recognition within complex
environments is affected by insufficient dataset and the low adaptability to variations [8].

4. Hierarchical research on CNN-based traffic sign detection is highly focused. However, it fails
to mitigate the vanishing gradient problem, preventing the development of deeper networks [9].

5. Additionally, conventional algorithms such as SVM and KNN have demonstrated limitations in
processing large datasets, and they do not fully address the computational complexity and gradient
vanishing problems that DRL still encounters [12].

In some areas, AGA outperforms CNN. For instance, AGA has shown superior performance in
malware detection, especially for new malware, compared to CNNs. AGA also performs better than
CNNs in multimodal optimisation problems. Moreover, the combination of AGA and CSO leverages
the strengths of both techniques to enhance optimisation algorithm performance. The automatic
feature selection framework combining CSO and AGA significantly improves the efficiency and
accuracy of feature selection. This combination achieves superior performance in complex
optimisation problems, making it well-suited for feature selection, pattern recognition, and
autonomous driving [1-4,10,11,13-18].

1. A study proposed an automatic feature selection framework integrating CSO and AGA,
significantly enhancing the efficiency and accuracy of feature selection [2].

2.A study proposed a new hybrid Ant Colony Optimisation (ACO) and genetic algorithms (GA)
method for feature selection, demonstrating the advantages of combining AGA and CSO [3].

3. A study conducted a comprehensive survey of deep learning techniques for autonomous
driving, highlighting the advantages and limitations of various methods (including many algorithms)
in terms of efficiency and real-time performance [8].

4. One study found that AGA outperformed CNNs in malware detection, particularly when
identifying new malware [10].

5. Some studies discuss the advantages and disadvantages of GA, noting that AGA is superior to
CNNs in multimodal optimisation problems [11].

6. A study reviewed evolutionary computation methods for feature selection, demonstrating their
ability to significantly improve efficiency and accuracy in high-dimensional data processing [15].

7. A study examined feature selection methods for high-dimensional data and demonstrated that
combining different algorithms can enhance optimisation algorithm performance [16].

8. A study explored deep learning-based traffic sign detection and recognition for autonomous
vehicles, showing AGA and CSO can improve the accuracy and efficiency of these systems [17].

9. A study of traffic sign recognition highlighted the advantages of AGA and CSO [18].
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3. Methodology
3.1. Overview

Our method involves using CSO for feature screening to select the most suitable features, followed
by training with the AGA based on these selections. Figure 1 illustrates our framework, outlining the
main steps of our approach. Briefly, we pre-processed the dataset, applied CSO for feature selection,
and then trained the model using AGA to obtain the final result.

Data Pre-
processing Feature Selection

— using CSO
Missing Value 0
Removal Algorithm

Feature Scaling

Generate and evaluate

initial population

Select parent, crossover,
Output the and mutation operations
Evaluation OF:t':T‘a' Generate a new population
Sl reaching threshold

Classification of AGA tuning

Figure 1: The framework of CSO and AGA
3.2. Implementation details of CSO

In the third step of the framework, we used CSO for feature selection. CSO is a swarm intelligence-
based optimisation algorithm widely used in feature selection tasks. In the field of signboard
recognition, the CSO algorithm iteratively optimises the feature set to determine the optimal feature
subset. Specifically, CSO first receives all extracted features from the signboard image as input and
evaluates the classification performance of the feature subset using an objective function. Through
competitive strategies and swarm intelligence, the algorithm continuously refines the feature
selection process, ultimately outputting a subset of features that performs best according to the
objective function.

PSO is a population-based optimisation algorithm that guides particle searches to obtain the
global optimal solution by simulating interactions between birds and fish in nature. The PSO
algorithm begins with a set of randomly generated particles (algebra), and updates them to converge
on the best solution. Each particle is associated with a position and velocity vector, corresponding to
the dimensions of the search space. In each iteration, every particle updates two optimal values: one
is the best fitness value within a group, and the other is the maximum fitness solution [10].

The algorithm expression for PSO is:

Vied + 1 = vyg+ c1-rand(0, 1) - (pua — Tua) + c2 - rand(0, 1) - (Prgd — Tita)
Tigt+1 = Ttia + viar + 1
Here, each variable represents the position and velocity of the particle, the index of the particle,

the number of iterations, the dimension of the search space, the speed that controls the flight
distance, and a random value from O to 1.
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CSO and PSO have been developed to enhance global search functionality and improve
convergence speed. CSO updates the position and speed of particles through a competition
mechanism, preventing them from becoming trapped in a local optimum state. The primary
objective is to improve the efficiency and accuracy of feature selection by identifying the best
solution via the competitive mechanism. Compared with CSO, PSO offers advantages in processing
high-dimensional data and tackling complex optimisation problems.

The mathematical formula is as follows: Let the particle position be =z; , the velocity be wv; , and
the fitness value be z; . In each iteration, particles update their positions and velocities according to
the competition mechanism, as follows:

vi(t+1) = w-vi(t) +cr-ri- (pi — 2i(t)) +ca-ra- (g5 — zi(t)) zi(t + 1) = zi(t) + vt + 1)

Where:
w 1s the inertia weight; ¢; and ¢, are acceleration coefficients; r; and r, are random numbers;
p; 1s the individual optimal position of the particle; g; is the overall optimal position.

The fourth step of the framework involves training the data. AGA is an improved genetic algorithm
that dynamically adjusts crossover and mutation probabilities to improve search efficiency. When
training a character recognition model, the AGA algorithm first receives an annotated character
image along with its corresponding category label as input and generates an initial population of
randomly generated multiple model parameter individuals. Fitness functions are then used to
evaluate the classification performance of each individual. Through iterative optimisation, AGA
continuously refines crossover and mutation probabilities, ultimately identifying the optimal model
parameters. Finally, the algorithm outputs a model parameters that achieve the highest fitness
function performance, adjusting fitness values throughout the training process to refine the optimal
individual parameters.

Before introducing AGA, it is useful to first provide an overview of its foundational model:
Genetic Algorithm (GA). GA is an efficient optimisation tool that uses computational models based
on natural selection principles to solve problems. It finds optimal solutions through crossover and
mutation processes, mimicking genetic recombination and mutation in nature to create new solutions
distinct from existing ones, allowing them to evolve within an environment. Over time, GA-driven
responses converge towards optimal solutions. One of its key advantages is its ability to select the
best combination and explore large search spaces efficiently.

AGA improves upon GA by weighting crossover and mutation probabilities based on fitness
values to yield superior results. The AGA process includes encoding, fitness calculation, selection,
reproduction, crossover, mutation, and decoding. To enhance the effectiveness of GA, AGA
introduces more broadly applicable adaptive crossover and mutation probabilities [10,11].

The specific dynamic adjustment formulas for crossover rate and mutation rate are as follows:
Let the individual’s gene representation be Gi and fitness value be Gi . In each iteration, crossover
and mutation operations are dynamically adjusted based on fitness values.

Gi(t + 1) = crossover(Gi(t), Gj (t)) Gi(t + 1) = mutation(Gi(t))

where crossover and mutation rates are dynamically adjusted based on fitness values, with the
formulas:
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Pc:Pc0-<1fif(%> Pm:Pmo-(k%)

where Pc0 and Pm0 are initial crossover and mutation rates, and fmaz is the maximum fitness
value.

AGA optimises crossover and mutation processes through an adaptive mechanism, significantly
enhancing search efficiency and convergence accuracy. AGA demonstrates excellent adaptability
and robustness in complex optimisation problems, including feature selection, pattern recognition,
and automated operations. By dynamically adjusting the rates of intersection and mutation, the
solution space can be searched more effectively, facilitating the identification of the global optimal
solution, and improving the overall performance of the algorithm.

3.4. Benefits and advantages of combining CSO and AGA

By combining the advantages of CSO and AGA, optimisation algorithm performance can be
significantly enhanced. CSO selects the optimal feature subset through a competition mechanism,
improving the efficiency and accuracy of feature selection. Meanwhile, AGA refines crossover and
mutation operations through adaptive mechanisms, boosting search efficiency and convergence
accuracy, ultimately improving the model’s accuracy and robustness.

This approach is particularly well-suited for feature selection, pattern recognition, and automatic
operation, as it delivers exceptional performance in complex optimisation problems. Compared with
conventional image recognition algorithms such as Vector Space Model (VSM), Conventional
Neural Networks (CNNs) and traditional Deep Reinforcement Learning (DRL), CSO and AGA offer
distinct advantages in analysing high-dimensional data and solving complex optimisation problems.
Their ability to efficiently explore the solution space and identify global optimal solutions also
contributes to improvements in accuracy, robustness, and computational efficiency.

4. Experimental study
4.1. Experimental setup

We used Python language to complete this task. We ran the task on Google Colab with a T4 GPU
and an A100 GPU with 40 or 80 memories [19].

4.1.1. Dataset

The dataset used as the basis for this article is the GTSRB dataset [20][21]. This dataset has been
recognised for its strong performance in previous studies and consists of 51,839 images. It is divided
into 75% training data and 25% test data, all of which are real-world images.

4.1.2. Algorithm
We implemented the CSO-AGA algorithm in our experiment.
4.1.3. Factors

We varied the three parameters: (1) epochs, (2) batch sizes and (3) filters to optimise the baseline.
Epochs refer to the number of times the entire training dataset is processed. More epochs usually
mean that the model has additional opportunities to learn and adjust its parameters.
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Batch sizes determine the number of training samples used in each iteration. Larger batch sizes
can accelerate training, but require more memory.

Filters represent the number of convolutional filters in a neural network, which are used to extract
features from images. A higher number of filters can capture more details, but this also increases
computational complexity.

Measurement

We use (1) accuracy and (2) runtime as evaluation criteria. Accuracy is measured in percentages,
and time is measured in seconds.

The accuracy of the model is given by the formula:

Number of Correct Predictions
Total Number of Predictions

Accuracy =

4.2. Experimental results

Epochs: The number of epochs we tried was {10, 20, 30, 50, 200}, with the bold value representing
our initial setting. Accuracy improved to some extent following both reductions and increases in
epochs. The most significant improvement occurred at 30 epochs, achieving an accuracy of 97.74%,
which marks a 1.31% increase compared to the baseline. In accordance with common sense, the
running time increases with the number of epochs.

Accuracy (%)

2
nnnnnn Batch Size

Figure 2: Accuracy of epochs  Figure 3: Accuracy of epochs

Batch size: After reducing and increasing the number of batches {8, 16, 32, 48, 64}, the initial
basic accuracy with 32 batches was 96.43% and the accuracy improved to a certain extent. The most
significant improvement occurred at 64 batches, achieving an accuracy of 98.24%, which increased
by 1.81% compared to the baseline. The running time increases slightly with the increase of batch
size, but declines at 64 batches. The correlation is not significant.
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Figure 4: Accuracy of batch sizes Figure 5: Run time of batch sizes
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Filters: The initial baseline accuracy with 32 filters was 96.43%. After testing different filter
configurations, {8, 16, 64, 128}, the accuracy improved to some extent. The most significant
improvement occurred at 64 filters, achieving 97.59% accuracy — an increase of 1.16%. The running
time fluctuates with the change of filters, and the correlation is not significant.

aaaaaa

Figure 6: Accuracy of filters Figure 7: Run time of filters

Replacing Dataset: We replaced some traffic sign images from different countries into the
original dataset. Following this replacement, the model maintained strong accuracy, demonstrating

excellent robustness [21].
By adjusting training parameters such as epochs, batch sizes, and filters, we achieved a high
accuracy rate of 97.973% and reduced computation time by approximately 20%.

INPUT OUTPUT

Actual Class Left only, Predicted Class Left only

Actual Class Speed limit B0 kmph, Predicted Speed limit 80 kmph

Actual Claoss Speed limit 30 kmph, Predicted Speed limit 30 kmph

Figure 8: Example
5. Conclusion

In this study, we have demonstrated the effectiveness of combining CSO and AGA to optimise
traffic sign recognition systems. By adjusting training parameters such as epochs, batch sizes, and
filters, we achieved a high accuracy rate ranging from 96.215% to 97.973%, while reducing
computation time by approximately 20%. Our approach ensures robust performance under various
environmental conditions and efficiently handles high-dimensional data. The integration of CSO and
AGA provides a powerful solution for feature selection and model training, making it well-suited for
advanced driver assistance systems and autonomous driving applications.
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In future work, we aim to employ improved algorithms to enhance the three main evaluation
indicators: efficiency, robustness, and computational efficiency. Further advancements in these areas
will provide greater benefits for traffic sign recognition. Additionally, we plan to extend this
technology to other image recognition domains, such as infrared visible light fusion and medical
image recognition.
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