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Abstract. Predictive modeling of clinical risk using patient electronic health records (EHRs) has 

the potential to enhance healthcare outcomes by enabling early detection and intervention for 

high-risk patients. However, dealing with sparse, irregular, and temporal EHR data presents 

significant challenges. This paper presents a comparative study of clinical risk prediction with 

limited patient electronic medical records. The related literature is categorized and compared 

based on research objectives, methods and experimental analysis. Additionally, potential 

research opportunities for future work in this area are discussed. Meta-learning-based algorithms 

have the ability to overcome data scarcity challenge by learning shared feature representations. 

Nevertheless, further research is necessary to address limitations such as the interpretability and 

generalizability of the model across different patient populations. 
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1.  Introduction 

The integration of machine learning (ML) in healthcare has garnered significant attention in recent years. 

One of the most auspicious applications of ML in healthcare is clinical risk prediction, which entails 

forecasting the probability of a patient developing a specific disease or condition based on the patient's 

medical history and other pertinent factors. Nonetheless, developing precise clinical risk prediction 

models poses challenges due to the intricate nature of medical data, the vast amount of data necessary 

to train the model, and the intricacy of interpreting the model output. 

This paper provides a review of a meta-learning-based approach to clinical risk prediction that can 

accurately predict patient risk levels even in instances where electronic medical records are limited. In 

Section 2, we categorize research pertaining to risk prediction into two categories: clinical medicine-

related prediction and non-clinical medicine-related prediction. We also classify research objectives into 

two separate directions: accuracy improvement and performance improvement, which includes reducing 

the required sample size and increasing speed, among others. This classification facilitates a deeper 

understanding of the scope and nature of risk prediction research. 

Section 3 of this paper partitions research methods pertaining to risk prediction into two distinct 

categories: general machine learning methods and dedicated machine learning methods. Within the 

realm of machine learning, models are further classified into discriminative and generative models. This 

classification enables comparison of different risk prediction modeling methods and facilitates the 

identification of common methods utilized in clinical risk prediction research. 

Proceedings of the 2023 International Conference on Software Engineering and Machine Learning
DOI: 10.54254/2755-2721/8/20230281

© 2023 The Authors. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(https://creativecommons.org/licenses/by/4.0/).

584



Section 4 of this paper conducts a comparative experimental analysis of related literature on risk 

prediction modeling. Through comparison of experimental measures and system factors, we examine 

the approaches adopted by relevant papers towards clinical risk prediction and the insights that they 

have yielded. 

In Section 5, we suggest that clinical risk prediction systems may not perform optimally on certain 

datasets. Furthermore, we discuss potential opportunities for future research in clinical risk prediction 

modeling and highlight areas that warrant further exploration and may serve as possible future research 

directions. 

Lastly, this paper summarizes the meta-learning-based clinical risk prediction model discussed 

within, as well as the research findings of related papers on clinical risk prediction models. The key 

points of analysis are emphasized to provide a comprehensive understanding of the efficacy of the 

proposed model and the insights gained from prior research in this field. 

The remainder of the paper is organized as follows: Section 2 presents the classification of research 

objects pertaining to clinical risk prediction. Section 3 introduces the classification of research methods. 

Section 4 provides a comparative analysis of experimental studies in related literature. Section 5 

discusses potential opportunities for future research, and Section 6 offers a conclusion to the paper. 

2.  Classification of research objects 

Table 1. Different research objects. 

Research Scope Research Directions 

Efficiency Accuracy 

Medical I. [6][7][8][14][22][23] II.[3][34][42] 

Non-medical III.[9][10][13][15][16][17][25][26][27][30] 

[32][33][35][40][41] 

IV. [20] 

2.1.  Criteria 

Given that the focus of the studied paper is the application of neural networks in the medical field, it is 

appropriate to classify research objects into two distinct types based on their medical relevance. In this 

section, two independent criteria will be employed to differentiate research objects: 

1)Research Scope: This criterion divides research objects into two categories - medical and non-

medical - based on their application scenarios in machine learning. 

2)Research Direction: This criterion divides research objects into two categories - efficiency and 

accuracy - based on the direction of research. Efficiency includes factors such as generalization ability, 

learning rate, sample requirements, and interpretability. 

2.2.  The classification 

Based on the appeal classification standard, we give the classification in Table 1. The meaning of each 

class is as follows: 

2.2.1.  Type I: efficiency & medical. This category focuses on research that aims to improve the 

efficiency of machine learning methods in the medical field. References ([6] [7] [8] [14] [22] [23]) 

belong to this type. Reference [6] proposes the development of a more explanatory machine learning 

model using electronic health record (EHR) data. Reference [7] proposes a graph-based attention model 

for healthcare representation learning. The proposed model utilizes the graph structure of electronic 

health records to capture the relationships between different medical concepts and learn a low-

dimensional representation of patients. Reference [8] proposes the development of a  RNN  model for 

the early detection of heart failure episodes. Reference [14] proposes a DNN approach to classifying 

skin lesions into three categories: benign, malignant, and nonthreatening. Reference [22] aimed to 

predict a model for frequent COPD exacerbates using variables such as prior COPD exacerbation 

history, smoking status, and medication use. Reference [23] proposes an image-based deep learning 
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approach for identifying medical diagnoses and treatable diseases. The proposed approach utilizes a 

deep neural network to analyze medical images. 

2.2.2.  Type II: accuracy & medical. This type of research focuses on improving the accuracy of machine 

learning methods related to the medical field. References ([3] [34] [42]) belong to this type. Reference 

[3] proposes a deep learning framework based on longitudinal electronic health record data for subtyping 

patients. The framework is time-aware. The results demonstrate that the method outperforms other 

methods in terms of accuracy. Reference [34] proposes to use EHR data to develop predictive models 

for predicting the likelihood of readmission within 30 days of patient discharge based on pre-admission 

data such as demographics, past medical history, and medication use. The results showed that the 

prediction model achieved high accuracy in identifying patients at risk of readmission. Reference [42] 

used a dataset of EHRs from patients with heart disease and applied a convolutional neural network 

(CNN) to discover temporal patterns involving multiple types of clinical events, such as diagnoses, 

procedures, and medications. The research found that the CNN method effectively improved accuracy.  

2.2.3.  Type III: efficiency & non-medical. This type of research on improving the efficiency of machine 

learning methods is related to non-medical fields. References ([9] [10] [13] [15] [16] [17] [25] [26] [27] 

[30] [32] [33] [35] [40] [41]) belong to this type. Reference [9] proposes an approach called "RL2", 

which combines reinforcement learning and meta-learning. The approach is designed to enable agents 

to learn, so they can quickly adapt to new tasks and environments. Reference [10] proposes a deep neural 

network architecture that can perform multiple natural language processing (NLP) tasks simultaneously 

through multitask learning. The research shows that a unified architecture with multitask learning can 

improve the performance of NLP tasks. Reference [13], a new language representation model. The 

model performs better than the previous model on several benchmark datasets. Reference [15] proposes 

a method for quickly adapting deep neural networks to new tasks. Reference [16] proposes a meta-

learning approach for one-shot visual imitation learning, which allows a robot to learn how to perform 

a new task from just one demonstration. Reference [17]’s proposed method utilizes a meta-learner to 

learn how to quickly adapt to a new low-resource language pair by leveraging knowledge learned from 

other language pairs. Reference [25] describes a new optimization algorithm called Adam, which is 

designed to be computationally efficient and has been shown to converge quickly and robustly on a wide 

range of optimization problems, including those involving deep neural networks. Reference [26] 

proposes a method for image recognition using Siamese neural networks, which are deep learning 

models composed of two or more identical sub-networks that share the same weights. The experiments 

show Siamese neural networks outperform traditional approaches for one-shot learning. Reference [27] 

proposes a method to learn concepts using probabilistic program induction (PPI) and demonstrates the 

effectiveness of the approach on a number of tasks. Reference [30] proposes a pre-trained language 

representation model specifically designed for biomedical text mining. Reference [32] and [35] propose 

an approach to address the problem of few-shot learning, which is the ability to recognize new objects 

or classes with limited training examples. Reference [33] proposes a new approach to meta-learning 

called the Memory-Augmented Neural Network (MANN). The research shows that the proposed 

Memory-Augmented Neural Network outperforms existing methods. Reference [40] proposes a neural 

network architecture called "Transformer," which relies on recurrent neural networks but suffers from 

computational inefficiencies and difficulty in parallelization. Reference [41] proposes a novel approach 

for one-shot learning, where a model can recognize a new object from just one example. A comparison 

with several baselines shows that the performance of the matched network is significantly better than 

them. 

2.2.4.  Type IV: accuracy & non-medical. This type of research focuses on improving the accuracy of 

machine learning methods related to non-medical fields. References ([20]) belong to this type. Reference 

[20] proposes a technique called batch normalization, which normalizes the inputs to a layer by 

subtracting the mean and dividing by the standard deviation of the inputs within a mini-batch. The 
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experimental results provided in this paper show that batch normalization can significantly improve the 

accuracy of deep neural networks in the task. 

3.  Classification of research methods 

Table 2. Different research methods. 

3.1.  Criteria 

Machine learning can be applied in many fields, such as image processing, recommendation systems, 

medical prediction, etc. Using algorithms that meet the characteristics of different application scenarios 

can improve the performance of models and save costs. Research can be done to generate a generative 

model by preprocessing the data or to face the predictions directly. In this section, two independent and 

different criteria will be used to divide research objects into different types: 

1)Algorithm types: There are two types here: Specialized Machine Learning Algorithms and 

General-purpose Machine Learning Algorithms.  

2)Model types: There are two kinds of models here: Discriminative Model and Generative Model. 

The research can generate the generative model by learning the conditional probability distribution from 

the joint probability distribution of the data, and it can also directly learn the decision function or 

conditional probability distribution from the data to generate the discriminative model. 

3.2.  The classification 

Based on the appeal classification standard, we give the classification in Table 2. The meaning of each 

class is as follows: 

3.2.1.  Type I: discriminative model & specialized machine learning algorithms. This type of algorithm, 

when applied to specific domains, generates discriminant models. References ([14] [30]) belong to Type 

I. Reference [14] proposed in the paper is a discriminative model that uses a deep convolutional neural 

network (CNN) to classify skin lesions as benign or malignant. Reference [30] created a new language 

model called BioBERT, which can be used to identify disease characteristics. 

3.2.2.  Type II: generative model & specialized machine learning algorithms. This type of algorithm is 

applied to specific domains to generate generative models. References ([23]) belong to Type II. 

Reference [23] re-processes large datasets of medical images to generate generative models to identify 

treatable diseases by analyzing medical images. 

3.2.3.  Type III: discriminative model & general-purpose machine learning algorithms. This type of 

algorithm is applied to general-purpose domains and generates discriminant models. References ([8] 

[34] [38]) belong to Type III. Reference [8] uses RNN models to analyze EHR data, the researchers are 

able to identify patterns that could indicate the early stages of heart failure. Reference [34] describes 

using machine learning algorithms to analyze EHR data to predict which patients are at higher risk for 

readmission. Reference [38] compares the performance of several machine learning algorithms, 

Algorithm Types 

 Model Types 

Discriminative 

Model 
Generative Model 

Specialized Machine Learning 

Algorithms 

I.[14][30] II. [23] 

General-purpose Machine 

Learning Algorithms 

III. [8][34][38] IV.[13][15][16][17][27][33][41] 
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including logistic regression, decision trees, and random forests, in predicting three outcomes: patient 

discharge, hospital admission, and transfer to another healthcare facility. 

3.2.4.  Type IV:  generative model & general-purpose machine learning algorithms. This type of 

algorithm is applied to general-purpose domains and generates generative models. References ([13] [15] 

[16] [17] [27] [33] [41]) belong to Type IV. Reference [13] suggests pre-training it on a large corpus of 

text data to enable it to learn general language understanding and capture the semantic relationships 

between words. In the method of reference [15] [16] [17], the initial parameters of the model are 

optimized to adapt to the new task quickly, so as to train the model to adapt to the new task quickly. 

Reference [27] proposes a method for learning probabilistic programs from input-output examples. 

Reference [33] proposed a new method of meta-learning. The model is trained on sequences of tasks, 

which combine a neural network with an external memory module. The memory module stores past 

experiences, and the neural network learns to use these experiences to adapt to new tasks. Reference 

[41] proposes a new framework called "Matching Networks," which can learn to classify new objects 

from just one or a few examples. 

4.  Review of experimental analysis 

In this section, we will classify the metrics of evaluation and system factors, as shown in Table 3. In 

Table 3, all experimental analysis is also classified according to the metric and factors. It can be seen 

from Table 3 that most of the references compare precision, recall, and F1-score. 

Table 3. Experiments with different metric and factors. 

4.1.  Metric of evaluation 

Precision means the ratio of true positives (TP) to the total number of samples that are predicted as 

positive by a classifier. It measures how accurately the classifier identifies positive samples. The formula 

is as follows: 

precision =  
TP

TP + false positive(FP)
 

Recall means the ratio of true positives (TP) to the total number of actual positive samples. It 

measures how well the classifier can identify all positive samples. The formula is as follows: 

Recall =  
TP

TP + false negative(FN)
 

F1-score means the harmonic mean of precision and recall, which combines both metrics into a single 

value. It provides a balanced evaluation of the classifier's performance by taking both precision and 

Metric System Factors 

Algorithms Dataset Epoch Others 

Precision/Accura

cy 

[3][8][10][13][14][15][18][23][3

2][38][41][42] 

 [2][3]   

Recall [3][15][38][41][42]    

F1-score [3][7][10][13][15][30][35][38][4

1][42] 

   

AUC-ROC [3][6][7][8][13][14][18][23]][38]

[42] 

  [11][15] 

Sensitivity/Specifi

city 

[14][18][23][38]    

Others [7][13][16][18][23][27][30][38][

40] 

 [17][23]  [25][23]  [22] 
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recall into account. The higher the F1-score, the better the performance of the classifier. The formula is 

as follows: 

F1 − score =  
2 ∗ (Precision ∗ Recall)

(Precision + Recall)
 

AUC-ROC is a performance metric used to evaluate binary classification models. The AUC is the 

area under the ROC curve and ranges between 0 and 1. The higher the AUC, the better the performance 

of the model. 

Sensitivity means the proportion of people with a particular disease who test positive for it. It 

measures the ability of a test to correctly identify patients who have the disease. Specificity means the 

proportion of people without a particular disease who test negative for it. It measures the ability of a test 

to correctly exclude healthy individuals.  

Other metrics include loss function, reward function, BLEU and PPV, and NPV.System factors 

Algorithms represent the research using models and algorithms. The dataset represents the research that 

used a training set, a validation set, and a test set. Epoch represents a complete pass through the entire 

training dataset during model training. Other factors include environment, learning rate, and neural 

network layers. 

4.3.  Experimental comparison 

In reference [3][13][15], the authors used precision, recall,AUC-ROC, accuracy and F1-score metrics 

to evaluate the performance. In reference [6], the authors use receiver ROC curves to measure the 

tradeoff between the true positive rate and the false positive rate for different classification thresholds. 

They also report the area under the AUC-ROC scores as a summary metric of model performance. In 

reference [7], the model is evaluated with using standard metrics such as the AUC-ROC and F1 score. 

In reference [8], the performance of the model is evaluated using standard metrics such as AUC-ROC 

and accuracy. Hyperparameters such as the number of LSTM cells and learning rate are tuned during 

training to optimize performance. In reference [10], the performance of the model is evaluated using 

standard metrics such as accuracy and F1 score. Hyperparameters such as the number of hidden units 

and learning rate are tuned during training to optimize performance. In reference [14], evaluation metrics 

such as accuracy, sensitivity, specificity, and AUC-ROC are used to assess model performance. 

Hyperparameters such as learning rate and dropout rate are tuned during training to optimize 

performance. In reference [18], evaluation metrics such as AUC-ROC, sensitivity, specificity, PPV, 

NPV, and accuracy are used to assess model performance. Several hyperparameters are tuned during 

training, including learning rate, batch size, weight decay, and dropout rate. In reference [23], evaluation 

metrics such as AUC-ROC, sensitivity, specificity, PPV, NPV, and accuracy are used to assess model 

performance. Several hyperparameters were tuned during training, including learning rate, batch size, 

weight decay, and dropout rate. In reference [30], evaluation metrics such as the F1 score and EM are 

used to assess model performance on specific tasks such as NER, relation extraction, and question 

answering. Several hyperparameters were tuned during training, including learning rate, batch size, 

number of training epochs, and maximum sequence length. In reference [32][38][42], evaluation metrics 

such as accuracy, precision, recall, and the F1 score are used to assess model performance. Several 

hyperparameters are tuned during training, including the number of iterations used to train the meta-

learner, the number of examples used for each task, and the learning rate used for both the meta-learner 

and base learner.  In reference [41], evaluation metrics such as accuracy, precision, recall, and F1 score 

are used to assess model performance. Several hyperparameters are tuned during training, including 

learning rate, batch size, number of training epochs, and embedding dimension.  

5.  Discussion and suggestion 

This paper discusses the research methods and research objects of various references and finds that 

although clinical risk prediction is able to perform clinical risk prediction with limited data, it should be 

noted that in some datasets, the clinical risk prediction algorithm still performs worse than other 
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algorithms. Therefore, this paper puts forward the following directions, which can provide directions 

for future clinical risk prediction research: 

1) Further validation: Although the clinical risk prediction algorithm has achieved good prediction 

performance on multiple datasets, its effectiveness still needs to be further verified. Future research 

could consider using more and richer datasets to verify the performance of the algorithm. 

2) Scalability: The scalability of the clinical risk prediction algorithm is an issue to be considered. 

Since the algorithm is based on meta-learning, more domain expert knowledge may be needed to extend 

the applicable scope of the algorithm. 

3) Interpretability: In clinical risk prediction, the interpretability of the model is very important. 

Future research can consider increasing the interpretability of the algorithm in order to better understand 

the prediction results of the algorithm and improve its application value in clinical practice. 

6.  Conclusions 

This research article introduces clinical risk prediction, a meta-learning-based algorithm for clinical risk 

prediction with limited electronic health records of patients. The algorithm overcomes the challenge of 

a lack of data by learning shared feature representations and performs well on multiple datasets. The 

main contribution of this paper is to propose a new method for clinical risk prediction with limited data. 

Clinical risk prediction learns a shared feature representation by meta-learning, so that it can be applied 

to multiple datasets and improve prediction performance. Experimental results show that the clinical 

risk prediction algorithm achieves better prediction performance than other algorithms on multiple data 

sets. Although the proposed algorithm performs well on several datasets, further verification of its 

effectiveness is needed. Future research could consider using more and richer datasets to verify the 

performance of the algorithm. In addition, the scalability and interpretability of the algorithm are also 

issues that need to be further explored. In general, the clinical risk prediction algorithm provides a new 

idea and method for clinical risk prediction with limited data, which has great research and application 

value. 
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