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Abstract: Image segmentation, a core computer vision task, aims to partition digital images 

into semantically distinct regions. To accomplish these tasks, the U-Net architecture—a deep 

learning neural network enabling automated, high-precision segmentation—was developed. 

While U-Net derivatives have expanded into interdisciplinary domains like remote sensing, 

meteorological monitoring, agricultural disease detection, and geological exploration, the 

original architecture no longer satisfies the precision demands of modern medical 

segmentation and remote sensing applications, yet unexplored architectural innovations offer 

further potential for maximizing segmentation precision. This study investigates 

improvements to the baseline U-Net model using a dermatological image dataset, conducting 

rigorous metric evaluation to advance segmentation accuracy. The study employed U-Net's 

fundamental encoder-decoder convolutional structure. Primary innovations included 

implementation of comprehensive data augmentation on the original dataset and Integration 

of the Convolutional Block Attention Module (CBAM) into the model architecture to 

enhance robustness and performance. The experimental procedure included baseline 

evaluation, the standard U-Net model was executed on dermatological lesion imagery, 

yielding suboptimal binary segmentation masks as quantified by evaluation metrics; then 

enhanced methodology, applied data augmentation to improve dataset robustness and 

incorporated CBAM attention mechanisms to enhance focus on ambiguous boundary regions. 

Comparative analysis of both approaches demonstrated significant improvements in critical 

metrics (mIoU, Loss) for the augmented and attention-enhanced model. Through controlled 

comparison between standard and refined U-Net architectures, this research empirically 

validates that targeted enhancements—specifically data augmentation and CBAM 

integration—substantially elevate segmentation precision and enhance model robustness. 

These contributions represent notable innovations in U-Net-based image segmentation 

methodologies. 
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1. Introduction 

Image segmentation is a fundamental task in the computer vision, aiming to partition digital images 

into multiple semantically meaningful regions, thereby providing structured information 

representation for image understanding. This technology plays an indispensable role in diverse fields 

such as medical diagnosis, remote sensing monitoring, environmental perception, and industrial 

inspection. Particularly within the medical image analysis, the precise segmentation of lesions and 

identification of organs directly impact the accuracy of clinical decision-making. However, image 
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segmentation consistently faces significant challenges, including the ambiguity of object boundaries, 

interference from complex backgrounds, scale diversity, and the scarcity of high-quality annotated 

data, and these challenges are especially pronounced in the domain of medical imaging [1, 2]. 

Traditional image segmentation methods primarily relied on algorithms such as threshold 

segmentation, edge detection, and region growing. These approaches, however, often require 

manually engineered features that are prone to inaccuracy and inefficiency, exhibit sensitivity to 

noise, and possess limited generalization capabilities. The advent of deep learning ushered in new 

pathways for image segmentation through Convolutional Neural Networks (CNNs). Nevertheless, 

Fully Convolutional Networks (FCNs) demonstrated notable limitations in spatial detail recovery, as 

their coarse upsampling processes struggled to reconstruct fine object boundaries. In 2015, 

Ronneberger introduced the U-Net network, building upon the FCN architecture. Its innovative 

U-shaped symmetric topology, featuring an encoder-decoder structure coupled with skip connections, 

enabled the deep fusion of multi-scale features. Achieving superior performance in the ISBI cell 

tracking challenge, U-Net marked the advent of a new era in medical image segmentation [1]. 

The core breakthrough of U-Net lies in its biologically inspired design. The encoder simulates the 

feature abstraction process of the human visual system, progressively extracting semantic 

information through hierarchical convolutions and pooling. The decoder restores spatial resolution 

via upsampling operations. Crucially, the skip connections integrate shallow localization information 

with deep semantic features, effectively overcoming the bottleneck of detail reconstruction inherent 

in traditional FCNs. This architecture exhibits exceptional robustness in small-sample scenarios, 

rapidly establishing U-Net as the benchmark model for medical image segmentation. Subsequent 

research has extended U-Net-derived architectures to interdisciplinary domains, including remote 

sensing image analysis, meteorological monitoring (such as aerosol vertical structure identification), 

agricultural disease detection, and geological exploration [3-5]. 

However, the traditional U-Net structure can no longer meet the escalating accuracy requirements 

of modern applications such as medical segmentation and remote sensing image recognition. 

Enhanced variants like U-Net++, architectures incorporating attention mechanisms, and techniques 

employing sophisticated data augmentation strategies are increasingly prevalent, yielding more 

precise results. Despite these advances, numerous novel architectural concepts remain underutilized, 

and the ultimate precision potential of image segmentation has yet to be fully realized, necessitating 

continued exploration and research. This study will focus on investigating improvements (including 

CBAM Attention-U-Net and data enhancement) to the traditional U-Net model using a 

dermatological image dataset, conducting exploratory research and performance metric evaluation 

(including mIoU, mPrecision, mPA and mRecall) to enhance the segmentation accuracy of the U-Net 

model, thereby aiming to advance the field of image segmentation. 

2. Method 

2.1. Theoretical basis 

The fundamental architecture of UNet employs an encoder-decoder design, and the specific 

configuration is illustrated in Figure 1. The encoder is composed of repeated convolutional layers and 

downsampling layers, progressively extracting high-level semantic features. Conversely, the decoder 

utilizes transposed convolutions or deconvolutions to incrementally restore spatial resolution, 

culminating in a pixel-level classification output. A key innovation of this structure lies in the 

introduction of skip connections. These connections perform channel-wise concatenation of the 

feature maps from corresponding stages in the encoder with those in the decoder. This mechanism 

enables the network to simultaneously leverage the precise localization capabilities inherent in the 

shallow layers and the high-level semantic understanding captured within the deeper layers [1]. This 
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design proves particularly valuable in medical imaging, where it significantly enhances the 

segmentation accuracy of small target structures, such as blood vessels and pathological cells [1]. 

 

Figure 1: The structure of the U-Net [6] 

The Convolutional Block Attention Module (CBAM) employs a dual-attention 

mechanism—channel attention and spatial attention—to dynamically recalibrate the weight 

distribution of feature maps. This process enhances the model's focus on salient regions within the 

input data [7]. Furthermore, CBAM facilitates the extraction of multi-scale feature representations. 

Critically, its spatial attention sub-module, utilizing sequential global pooling operations followed by 

convolutional layers, demonstrates robust efficacy in identifying regions characterized by edge 

ambiguity or inadequate contrast [8]. Consequently, the integration of the CBAM mechanism within 

the U-Net architecture, via dynamic feature recalibration across both channel and spatial dimensions, 

yields statistically significant improvements in segmentation performance under these challenging 

conditions. The principal advantages are quantifiably demonstrated through enhanced segmentation 

accuracy, evidenced by reductions in loss metrics and elevated Intersection over Union (IoU) scores, 

along with improvements in parameter efficiency and training stability. 

2.2. Research process 

2.2.1. Dataset acquisition and preparation 

During the research process, a foundational dataset comprising over 1,200 dermatological lesion 

images was acquired from the Kaggle platform [9]. This substantial sample size was selected to 

ensure dataset sufficiency and enhance the robustness of the subsequent results. Each image 

underwent manual segmentation and annotation using the labelme software tool, generating 

corresponding JSON files delineating the lesion boundaries. These JSON annotations were then 

converted into pixel-wise label maps by executing the corresponding script, resulting in 

corresponding PNG format label images. Within this annotation schema, the defined classes were 

background and sick, representing the healthy background and pathological regions, respectively. 

Representative examples of the original images and their corresponding label maps are illustrated in 

Figure 2 (a) and Figure 2 (b). 
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(a) (b) 

Figure 2: (a) Representative image; (b) label image [10] 

2.2.2. Data augmentation 

To further bolster result robustness, the original JPEG images and the generated PNG label maps 

were subjected to a comprehensive data augmentation pipeline following the manual annotation 

phase. This pipeline incorporated stochastic geometric transformations (including random rotation 

and flipping) and photometric transformations (such as contrast enhancement and Gaussian blurring). 

This process yielded an augmented dataset with increased diversity and size, thereby improving 

model generalization capabilities. 

2.2.3. Training processing 

In the training pipeline configuration, following dataset preparation, the corresponding script was 

executed to automatically generate distinct training and validation sets in TXT format. The 

corresponding ratio parameter was configured to establish a 9:1 ratio between the training and 

validation data partitions. Subsequently, the `train.py` script was employed to initiate model training 

using both datasets. Training utilized RGB-format original images alongside 8-bit color-indexed 

label maps, adhering to the Pascal VOC data format. Input images possessed dimensions of [512, 512, 

3] (height × width × channels), while corresponding labels had dimensions of [512, 512]. The model 

architecture employed VGG16 as the backbone network with classes equaling 2. Additionally, in the 

weight initialization strategy, to ensure effective feature extraction and mitigate the detrimental 

effects of excessively randomized initialization in the backbone network, pre-trained weights were 

loaded from the logs path binary file. This strategy eliminated the need for separate pre-training. 

During it, the training regimen comprised two distinct phases, including a freezing phase (initial 

layers fixed) followed by an unfreezing phase (full network fine-tuned). Model weights were saved 

every 5 epochs, and a comprehensive evaluation was conducted similarly every 5 epochs. This 

balanced approach ensured precise performance monitoring while optimizing computational 

efficiency. Importantly, a hybrid loss function, integrating Dice Loss and Focal Loss, was 

implemented to address key segmentation challenges. Dice Loss ensured global structural similarity 

by equally weighting all pixels, thereby preventing small targets from being overwhelmed [8]; Focal 

Loss optimized the learning for hard-to-classify pixels, particularly local boundaries, by assigning 

higher weights to low-confidence, small-target pixels [10]. Synergistically, this combination 

enhanced robustness against class imbalance and boundary ambiguity. Crucially, Focal Loss acted as 

a stabilizer, mitigating the gradient oscillation inherent in Dice Loss under extreme predictions, 

resulting in a more stable training trajectory. Upon completion of training, the process yielded 20 

epoch-specific weight files, alongside `best` and `last` weight files, providing ready-to-use model 

checkpoints for future U-Net inference and prediction tasks, also yielded mean Intersection over 

Union (mIoU) and loss curves, generated for both the original and augmented datasets, accompanied 
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by real-time TXT log files which serve as quantitative metrics for comparative analysis and model 

evaluation. 

2.2.4. U-net predicting process 

Subsequently, processing the prediction step, the `predict.py` script was executed to generate pure 

binary segmentation masks (black-and-white) for each input image. During this inference process, 

zero-padding was dynamically applied to maintain the original aspect ratio of the input images. This 

padding was subsequently removed from the output masks to ensure dimensional fidelity and prevent 

any alteration to the final prediction results. Additionally, to augment the prediction robustness of the 

neural network architecture, a Convolutional Block Attention Module (CBAM) was integrated into 

the U-Net framework in the study. Lastly, following model inference, the file paths of all input 

images were specified via the terminal command-line interface. This facilitated the batch generation 

of pure binary PNG prediction masks corresponding to each original JPEG input image. 

Representative examples of these output segmentation results are presented in Figure 3. 

 

Figure 3: Output binary image (photo credit: original) 

The computational experiments were conducted within a dedicated Anaconda environment 

configured for PyTorch development. This environment incorporated GPU-accelerated computing 

support via CUDA and cuDNN libraries. The software components and Python packages utilized are 

shown in the following Table 1. 

Table 1: APP version 

Component Version Category 

Anaconda (Platform) Environment Management 

labelme 3.16.7 Annotation Tool 

Visual Studio Code (IDE) Development Environment 

PyTorch(torch) (GPU-enabled) Deep Learning Framework 

torchvision - Computer Vision Library 

tensorboard - Visualization Toolkit 

scipy 1.2.1 Scientific Computing 

numpy 1.17.0 Numerical Operations 

matplotlib 3.1.2 Data Visualization 

opencv-python 4.1.2.30 Image Processing 

tqdm 4.60.0 Progress Monitoring 

Pillow 8.2.0 Image Handling 

h5py 2.10.0 HDF5 Data Format Support 
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3. Evaluation index 

Key Evaluation Metrics value for Image Segmentation Performance are very important such as Mean 

Intersection over Union (mIoU), Loss, Mean Pixel Accuracy (mPA), Mean Precision (mPrecision), 

and Mean Recall (mRecall) constitute critical quantitative indicators for assessing the segmentation 

efficacy of U-Net models. These metrics provide multidimensional perspectives on predictive 

performance and are essential for rigorous data analysis and result evaluation, and this study also took 

them as evaluation metrics. 

Within these, IoU quantifies the degree of overlap between predicted segmentation masks and 

ground truth annotations, directly measuring segmentation accuracy at the pixel level, and mIoU 

represents the mean IoU value across all semantic classes, providing a comprehensive assessment of 

model performance on each category. A higher mIoU signifies superior segmentation quality, 

indicating greater alignment between predictions and manually verified labelme annotations; The 

Loss metric quantifies the discrepancy between model predictions and ground truth labels, serving as 

a fundamental indicator of predictive fidelity. During training, the loss function provides directional 

feedback to optimize model parameters by identifying areas requiring improvement; mPA computes 

the average pixel-wise accuracy per class, calculated as the ratio of correctly classified pixels to total 

pixels within each category, then averaged across classes. This metric is particularly relevant for 

class-balanced segmentation tasks, reflecting the model's per-class classification precision. Precision 

measures the proportion of correctly identified pixels among all pixels predicted as belonging to a 

specific class. Therefore, mPrecision denotes the class-averaged precision, evaluating the model's 

prediction reliability. this metric is crucial in class-imbalance scenarios, revealing the trustworthiness 

of positive class predictions; Recall calculates the proportion of actual positive pixels correctly 

detected by the model, indicating its sensitivity to target regions. mRecall represents the 

class-averaged recall, assessing the model's ability to identify all relevant positive samples (e.g., 

lesion boundaries). It is vital for evaluating coverage completeness in class-imbalance contexts, 

particularly for avoiding critical false negatives.   

Comprehensively, in practice, class-wise averages of Precision, Recall, and Pixel Accuracy yield 

mPrecision, mRecall, and mPA, respectively. These aggregated metrics furnish a comprehensive, 

class-agnostic evaluation of overall model performance, enabling robust comparative analysis across 

segmentation tasks. During the experimental phase, a comparative analysis was conducted between 

two distinct methodological configurations: 

Baseline Configuration: Utilizing the original dataset without data augmentation and employing 

the standard U-Net architecture without CBAM integration. 

Enhanced Configuration: Employing the augmented dataset and incorporating the CBAM 

attention mechanism within the U-Net framework. 

Both configurations were executed under identical training protocols. This comparative approach 

yielded grouped fluctuation profiles for the mIoU (Mean Intersection over Union) and Loss 

(including train and val) metrics across the two experimental conditions. These diagnostic curves, 

illustrating metric convergence and stability throughout training, are presented in Figures 4 (a) 

through 4 (d).  
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(a) (b) 

  
(c) (d) 

Figure 4: (a) Base loss; (b) Aug loss; base mIoU; (d) Aug mIoU (photo/picture credit: original) 

As evidenced by the diagnostic curves (Figures 4a-4d), through the quantitative analysis of 

performance improvements, the integration of data augmentation and the CBAM attention 

mechanism yielded statistically significant performance enhancements across all evaluated metrics: 

1. Loss Metrics: Training Loss decreased from convergence near 0.20 to convergence near 0.18, 

representing a measurable reduction in optimization error.  

 
0.20−0.18

0.20
× 100% = 10% (1) 

Validation Loss decreased from convergence near 0.39 to convergence near 0.26, indicating 

enhanced generalization capability.   

 
0.39−0.26

0.39
× 100% ≈ 33.33% (2) 

2. mIoU Metric: Training mIoU increased from convergence near 65% to convergence near 80%, 

demonstrating substantial improvement in segmentation accuracy.   

 
80−65

65
× 100% ≈ 23.08% (3) 

The systematic reduction in loss values coupled with the significant elevation in mIoU provides 

empirical validation that the combined methodology of data augmentation and CBAM integration 

enhances model robustness. These quantitative results conclusively demonstrate the efficacy of the 

proposed architectural and data-processing enhancements. While the integrated methodology 
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demonstrated significant performance gains, diagnostic curves reveal persistent limitations requiring 

further refinement: 

1. Loss Metric Instability. Although both training and validation losses exhibited quantifiable 

reductions post-enhancement, the optimized Loss curves displayed pronounced oscillations around 

epoch 50. This heightened volatility may be attributed to an excessively high learning rate､

suboptimal batch size configuration, and incipient gradient explosion phenomena. Future work will 

implement hyperparameter tuning, like adaptive learning rate schedulers and optimized data loading 

pipelines, to stabilize convergence dynamics. 

2. mIoU Convergence Behavior. Despite substantial mIoU improvement, the enhanced metric 

profile exhibited premature stabilization with attenuated fluctuations during later training stages. This 

plateau suggests potential convergence to local optima､ineffective learning rate decay protocols, and 

class imbalance effects undermining gradient diversity. Subsequent iterations will incorporate 

dynamic learning rate adjustment, real-time gradient monitoring, and rigorous overfitting diagnostics 

like stratified k-fold validation to escape suboptimal solutions. 

Furthermore, this study employed the ‘get_mIoU.py’ script to compute class-specific 

segmentation metrics for the augmented dataset incorporating the CBAM attention mechanism. 

Quantitative evaluations of background and skin lesion regions were systematically derived for four 

key performance indicators: mIoU, Mpa, mPrecision, and mRecall. The resultant class-wise metric 

distributions are visually presented in Figures 5(a) through 5(d), providing granular performance 

characterization across semantic categories. 

  
(a) (b) 

  
(c) (d) 

Figure 5: (a) mIoU; (b) Mpa; (c) mPrecision; (d) mRecall (photo/picture credit: original) 
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4. Conclusion 

This study addresses the limitations of traditional manual segmentation, namely its low accuracy and 

inefficiency, by proposing the use of a U-Net model for automated and efficient segmentation, 

concurrently enhancing segmentation precision. However, the conventional U-Net model has proven 

inadequate for scenarios demanding high precision, such as medical imaging or remote sensing, 

where targets are often small or exhibit blurred boundaries. Despite widespread application, existing 

modifications to the standard U-Net model (e.g., U-Net++, ResU-Net, Attention U-Net, and data 

augmentation techniques) have yet to yield substantial advancements, particularly lacking 

widespread adoption. Motivated by this gap, the present research undertakes an empirical 

investigation into the enhancement of the traditional U-Net model. Given its predominant application 

in the medical domain, this study utilizes an open-source dermatological lesion dataset sourced from 

Kaggle for experimentation. 

Leveraging the dermatological lesion dataset, this work explores and quantitatively evaluates 

specific modifications to the standard U-Net architecture: namely, the implementation of data 

augmentation (including random rotation, flipping, contrast adjustment, and Gaussian blurring) and 

the integration of the Convolutional Block Attention Module (CBAM) spatial attention mechanism. 

Performance is rigorously assessed using established metrics: mean Intersection over Union (mIoU), 

mean Precision (mPrecision), mean Recall (mRecall), and mean Pixel Accuracy (mPA). These 

enhancements demonstrably improved segmentation accuracy and model robustness, achieving a 

23% improvement in mIoU and reductions in loss of 10% and 33%, respectively. Critically, high 

mIoU values were maintained concurrently with high mPrecision and mRecall, demonstrating the 

potential to contribute significantly to advancements in image segmentation fidelity. 

Looking forward, the application of U-Net models for image segmentation is anticipated to expand 

considerably, encompassing interdisciplinary fields such as remote sensing image analysis, 

meteorological monitoring, agricultural disease detection, and geological exploration. It is envisaged 

that the improvements demonstrated in this study will facilitate the deployment of refined U-Net 

models in domains requiring even higher precision (e.g., medical diagnostics, remote sensing object 

recognition), thereby making substantial contributions to both academia and society.While 

U-Net-based image recognition in medicine is relatively mature, future developments hold promise 

for broader applicability in disciplines like mechanical engineering and, crucially, for fostering 

interdisciplinary innovation. For instance, integrating U-Net models for polar sea ice remote sensing 

image recognition with discrete element simulations could yield significant contributions to 

understanding polar climate dynamics and maritime navigation. Ultimately, this research underscores 

the potential for further refinement to unlock the full potential of U-Net models. 
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