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Abstract. The multi-armed bandit problem is one of the most classic reinforcement learning 

problems, aiming to find balanced decisions of exploration and exploitation and to increase the 

total reward of the actions from each round. To solve multi-armed bandit problems, algorithms 

were designed, including some of the most typical and widely used ones, like the Explore-Then-

Commit algorithm, Upper Confidence Bound algorithm, Epsilon-Greedy algorithm, and 

Thompson Sampling algorithm. Some of them are improvements upon others, while all of them 

seek to increase total reward but contain specific weaknesses. Epsilon-Greedy algorithm, as a 

simple method to balance exploration and exploitation of multi-armed bandit problems, has the 

disadvantage of still picking non-optimal actions even if it appears to be non-optimal for a very 

long time. Thompson Sampling algorithm, though performing well in many scenarios, costs a 

significantly long time to update its prior distribution each round and tends to explore too much 

in initial tries when the real distribution of reward is scattered. To further fix their weaknesses 

and improve their performance, this paper proposed a newly designed algorithm, Thompson ε-

Greedy (TEG), which seeks to utilize the advantages of both algorithms to complement each 

other’s disadvantages. The TEG algorithm is not only proved to perform better than ε-Greedy 

in most cases, but also turned out to be more adaptive in environments with true reward 

distributions that weaken Thompson Sampling Algorithm. Beyond the comparison of regrets, 

the paper further analyzed the time cost of applying TEG with those two existing methods and 

their best arm selection rates to illustrate the significance of the TEG algorithm. 

Keywords: Thompson E-Greedy algorithm (TEG), Epsilon-Greedy ( ε -greedy), Thompson 

Sampling, Multi-armed bandits (MAB). 

1.  Introduction 

Multi-armed bandit problems play a simplified setting for reinforcement study, where the environment 

is composed of a slot machine with k arms, each of which has an unknown reward. The goal is to 

maximize the reward gained from pulling n rounds. Designing algorithms to solve multi-armed bandit 

problems is important as a path to solve complex reinforcement learning problems, as it presents a non-

associative, evaluative feedback problem that reinforcement learning is aimed to solve [1]. 

Cumulative regret (R) is defined as the difference between the biggest possible rewards and the actual 

total rewards of n rounds: 
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  R = ∑ (μt
∗n

t=1 − μt) (1) 

As stated previously, those algorithms sought to maximize total reward from n rounds of the game, 

then it is equivalent to minimize total regret R. To compare if an algorithm performs well in solving 

multi-armed bandit problems, it is important to present its regret curve and compare with others. In the 

paper, the Thompson ε-Greedy (TEG) algorithm will be proposed under the context of stochastic 

stationary bandit problems, its regret curve will be compared with other popular algorithms, and its 

advantages and disadvantages will be analyzed for its best practical purposes. 

2.  Developments 

Among different types of multi-armed bandit problems, the stochastic stationary multi-armed bandit is 

defined as an environment where there is a set of distributions v = (Pa: a ∈ 𝒜), with 𝒜 being all 

possible actions [2]. Under the reinforcement learning model where the agent and the environment 

interact for n rounds of the game, the agent will pick an action At each round and the environment will 

then sample from PAt
 distribution and return a reward μt. The distribution of each possible action is 

stationary and will change with time. And then the goal is for an agent to use μt of each round to make 

better decisions in the future and reduce the total regret R. 

An intuitive policy is to apply the explore-then-commit (ETC) algorithm [3]. In ETC, each arm of 

the bandit is pulled for the same number of rounds m as an exploration phase, and then in the exploitation 

phase, the arm with the best mean reward μ̂i from the exploration phase will be pulled for the rest of 

rounds n - mk. Suppose there are k arms, then the decision of action for the round t is: 

  At = {
(t mod k) + 1, t ≤ mk

argmaxi μ̂i(mk), otherwise
 (2) 

A disadvantage of the algorithm is that m is hard to decide. To minimize R, both n and the 

suboptimality gap (the mean difference between an arm and the best arm) need to be known, or a 

threshold should be set for the exploration phase as proposed in the paper On Explore-Then-Commit 

Strategies [4]. 

Then to deal with the disadvantages provided by ETC, the Upper Confidence Bound (UCB) 

algorithm was designed [5,6]. Instead of exploring and exploiting separately, an upper bound of UCB 

index for each arm is created, which takes the number of times an arm is selected into account. Then the 

next action is always the one with the highest upper bound rewards, so the prior knowledge of 

suboptimality gaps is no longer essential in deciding the best actions. 

In the epsilon-greedy algorithm (ε-greedy), a parameter ε is used as the probability of exploration. 

Suppose there are k arms, then in each round, a random arm is chosen with ε probability, and the arm 

with the best mean so far is chosen with 1-ε probability: 

  At = {
random i ∈ {1, 2, … , k}, ε

argmaxi∈{1,2,…,k} μ̂i(t − 1), 1 − ε
 (3) 

It is an action-value method as it uses the sample average to estimate the value of taking an action. 

An advantage of ε-greedy is that it allows every action to be taken an infinite number of times, so it 

ensures that every arm reward estimate converges to its true reward [1]. However, it has a serious 

weakness that suboptimal arms will continue to be selected in the long run even though they are already 

identified as suboptimal. 

Thompson sampling, an old algorithm that was created by Thompson in 1933 [7], revealed to perform 

well lately in solving multi-armed bandit problems. It starts with a prior reward distribution on each of 

the arms. For each round, it samples from each distribution, picks the arm with the greatest reward 

sample, and uses the feedback of reward to update the distribution of the arm selected. Compared to the 

UCB algorithm, Thompson sampling performs better when dealing with long delays, as it “alleviates 

the influence of delayed feedback by randomizing over actions” [8]. 
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3.  Problems of 𝛆-Greedy and Thompson Sampling 

3.1.  𝜀-Greedy 

One notable problem of using ε-Greedy is to pick an appropriate ε value. If ε is too low, the model 

will fail to explore enough so that the optimal arm is missed for a very long time during which the regret 

is high in every exploitation, whereas if ε is too high, the model will explore too much to have enough 

exploitation or keep the regret small: 

 

 

Figure 1. The exploration-exploitation relationship in ε-Greedy (source from PyLessons). 

It is noted that even if ε is tuned to have the optimal fixed value ε∗, the regret is still bad because 

it is linear. Suppose there are k arms, and let j ∈ {1, … , k}: 

  E[Rt] = ∑ [(1 − ε)(μ∗
i − maxj(μ̂i,j)) + ε · (μ∗

i −
∑ μ̂i,jj

k
)]t

i=1  (4) 

As t goes up: 

  E[Rt] = ∑ ε · (μ∗
i −

∑ μjj

k
)t

i=1  (5) 

So, the regret R is Θ(T). 

In Finite-time Analysis of the Multiarmed Bandit Problem by Auer et al., making ε a decreasing 

function of 1/t successfully turns R to a logarithmic bound [9]. However, ε-greedy still faces the 

problem of picking random suboptimal arms, though logarithmic, in the later stage, when it seems to be 

clear which arm is the best. 

3.2.  Thompson Sampling 

One significant downside of Thompson Sampling is that when two arms have similar regret, it is difficult 

for it to differ which arm is the best [10]. Suppose there are two arms A, B, with their means μA > μB, 

and their means are close to each other. If using prior gaussian distribution for Thompson Sampling, at 

round t, two distributions might look like what is shown in Figure 2: 
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Figure 2. The reward distributions of two arms with a small mean difference. 

The probability that a random sample from B is higher than A is significant, so Thompson sampling 

will frequently pick arm B and increase the regret. Also, if the true reward distributions are scattered, a 

similar consequence happens as well, due to the high likelihood for a suboptimal arm to have a better 

sample than the optimal one. In both cases, Thompson sampling will spend a very long time to complete, 

therefore firms sometimes prefer modifying Thompson sampling to finish it within a reasonable amount 

of time. 

Another disadvantage of Thompson Sampling is that every time an action is chosen, a posterior 

distribution will be updated to take new reward into account. The process of updating a distribution can 

be time-consuming. If the multi-armed bandit problem takes n rounds to run and n is very large, the time 

cost of Thompson Sampling is considerable. 

4.  Design of Thompson 𝛆-Greedy algorithm (TEG) 

4.1.  Inspiration 

In Daniel Russo’s paper Simple Bayesian Algorithms for Best-Arm Identification, he proposed Top-

two Thompson Sampling, an algorithm based on Thompson Sampling. Instead of solely picking the arm 

of the sample with the best reward, Top-two Thompson Sampling has a 1/2 probability to pick the arm 

with the second-best reward sample [11]. This algorithm improves the rate of the best arm identification 

at the cost of regret. Though unmatched with the goal of minimizing regret in this paper, his algorithm 

reminded people that updating the distribution of the best arm with too many rounds will decrease its 

variance and therefore harm the best identification rate. The reason is intuitive: the distribution of the 

second-best arm maintains its large variance so there is a high probability that the sample has a reward 

higher than the best arm sample, as illustrated in Figure 3: 

 

 

Figure 3. The reward distributions of two arms with significantly different variances. 

Perceiving this peculiarity of Thompson Sampling, the author decided to postpone the trend of 

shrinking the best arm’s distribution, and the solution was to use ε-greedy. It is predicted that 
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implementing Thompson Sampling with ε-greedy could also improve the performance of ε-greedy 

algorithm’s exploration part, where the exploration would converge to the best arm. 

4.2.  TEG algorithm 

The design is to use ε-greedy as the framework of the algorithm. In ε-greedy, the arm with the highest 

mean reward is picked and the mean reward is updated afterwards. Therefore, it is important to record 

each arm’s mean reward as a global variable. At the same time, to apply Thompson Sampling in the 

case of exploration, the necessary parameters of reward distributions for each arm are stored. Depending 

on the prior distribution, different parameters apply, like α and β for beta distribution, or mean and 

variance for gaussian distribution. In the constructor of the algorithm, those variables are declared and 

initialized. 

 

TEG ALGORITHM CONSTRUCTOR 

 Input: number of arms; prior distribution type 

 arm_num ← number of arms 

 Initialization of greedy variables:  

  T ← arm_num length of zeros, represent number of times each arm is 

pulled 

  𝝁 ← arm_num length of zeros, represent each arm’s current mean 

reward 

 end 

 Initialization of distribution parameters:  

  arm_num length array of means, etc. call those parameter arrays 

𝒑𝑨, 𝒑𝑩, 𝒑𝑪, 𝑒𝑡𝑐. 
 end 

In the choose function, there are two parts: exploration with a possibility of ε, and exploitation with 

a possibility of 1-ε. In the exploration stage, the arm with the highest sample reward is chosen, whereas, 

in the exploitation stage, the arm with the highest mean reward is picked. Note that to improve the 

performance of the algorithm, each arm is required to be pulled once to rationalize the mean reward and 

the reward distribution. Besides, the reward distributions are updated only when Thompson Sampling 

is applied at that round, or otherwise, the best arm’s distribution will shrink too much at the exploitation 

part to be preferred in the exploration part as previously mentioned. Therefore, a flag representing if it 

is exploration for this round is returned, so that the update function will be clear on if the reward 

distribution should be updated. 

 

TEG ALGORITHM CHOOSE 

 Input: t: i-th round of the game 
 Output: the arm to be chosen, whether to update Thompson Sampling 

 if (t < arm_num) do //Make every arm pulled at least once 

  return t, True 

 end 

 rand ← a random float value between 0 and 1 

 if (rand <𝜀) do //Use Thompson Sampling as exploration 

  arm ←argmax of samples from each arm i’s distribution (𝒑𝑨[𝒊], 𝒑𝑩[𝒊], 𝒑𝑪[𝒊], 𝑒𝑡𝑐.) 
  return arm, True 

 end 

 else do //Similar to ε-greedy exploitation part 

  arm ← argmax of 𝝁 

  return arm, False 

 end 
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Lastly, in the update function, the mean reward of the arm that gets picked is updated as its actual 

reward of the current round is received. Then, check if it is required to update the reward distributions 

for Thompson Sampling through the Boolean flag that got returned during the choose function. 

Corresponding to the actual reward of the arm that got picked this round, update the relevant parameters 

of the reward distribution for the arm if the flag asked for an update (namely, if the flag is true). 

 

TEG ALGORITHM UPDATE 

 Input: arm: chosen arm, reward: real reward of the chosen arm in this round, 

ifTS: whether to update Thompson Sampling 

 𝝁[𝒂𝒓𝒎] ← ( reward + 𝝁[𝒂𝒓𝒎] ∗ 𝑻[𝒂𝒓𝒎]      T[𝒂𝒓𝒎]  + 1    Update mean. 

reward of the arm for ε-greedy exploitation 

 if  ifTS = True  do   Update Thompson Sampling distribution of the arm 

  update Thompson Sampling distribution for 𝒑𝑨[𝒂𝒓𝒎]   𝒑𝑩[𝒂𝒓𝒎]   
𝒑𝑪[𝒂𝒓𝒎]  etc. 

 end 

4.3.  Theoretical feasibility 

The author proposes that the TEG algorithm will outperform ε-greedy when using the same ε value. In 

the exploitation phase, two algorithms do the same process, so the regret difference between the two 

algorithms depends on the exploration phase and the accuracy of the mean reward. 

At each round of the Exploration phase: the expected regret ER for ε-greedy is the average 

suboptimality gap: 

  RT = T
∑ Δi

K
i=1

K
= C · T = Θ(T) (6) 

whereas the expected regret TEGR for TEG in the exploration phase is just the same as Thompson 

Sampling regret [2]: 

  TEGR T = Ο(√KTlog(T)) (7) 

Where T is the number of rounds of exploration, Δi is the suboptimality gap of arm i, K is the 

number of arms. As a result, it is guaranteed that TEGR T < RT when Ο(√KTlog(T)) < Θ(T), i.e., 

K <
T

log (T)
. In practice, each arm is always explored at least once for both algorithms, i.e., K ≤ T, so it 

is always that K <
T

log (T)
. Therefore, it is guaranteed that, in the exploration phase of the TEG 

algorithm, there is smaller regret than that in the exploration phase of the ε-greedy algorithm, when they 

use the same ε-greedy value. 

Secondly, the author suggests that the accuracy of the mean reward will be more precise for 

competitive arms and less precise for non-competitive arms. The reason comes from the principle of 

Thompson Sampling: compared with randomly picking an arm, Thompson Sampling prefers 

competitive arms to non-competitive arms. As a result, the confidence of competitive arms’ mean 

rewards is higher in the TEG algorithm than in ε-greedy. In the exploitation phase, competitive 

suboptimal arms are the main source of the regret, so making competitive arms more precise is a worthy 

trade-off for making the influential arms’ mean rewards more accurate, increasing the arm identification 

rate, and decreasing the regret. 

Thirdly, it is predicted that the running time for the TEG algorithm will be faster than Thompson 

Sampling, as the number of times that reward distributions are updated is reduced from 1 to ε each 

round. 

Lastly, the author conjectures that when two arms have similar regret or when true reward 

distributions are scattered, TEG will have better performance than Thompson Sampling in 
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distinguishing the best reward between arms. Compared to Thompson Sampling which every round 

compares every arm’s sample from the distribution, TEG spends most of the rounds picking the arm 

with the best reward mean. The advantage of using the best reward mean instead of the best reward 

sample is that it ignores the uncertainty of the sample values. While the reward sample’s value could be 

any point of a distribution’s curve, the mean reward value is fixed at any specific round. The stability of 

the mean reward gives the author the confidence that it will outperform Thompson Sampling in 

unfavored environments. 

5.  Methodology 

5.1.  Setting 

An environment of stochastic stationary bandits is created and the real arm reward distributions are set 

to a specific kind. Each time an arm is pulled, the real reward returned is a sample of that arm’s reward 

distribution. Three kinds of distributions are considered: gaussian, Bernoulli, and uniform. 

Gaussian/Bernoulli represents the cases where the reward could be continuous/binary. The reason for 

adding uniform reward distribution is to represent the case where the reward is scattered, due to what 

was previously stated, that Thompson Sampling will not work well in this scenario. Each distribution 

will create a different experiment to ensure TEG’s generality. 

Four arms are created for the bandit, each set with a different true mean reward. When the real reward 

distribution is gaussian, those four arms’ true means are set to be [5, 7, 9, 11] with a variance of 1. When 

the real distribution is Bernoulli, true means are set to be [0.05, 0.35, 0.65, 0.95]. When the real 

distribution is uniform, the true means are set to be [1, 1.7, 2.4, 3.1] each with a range of 1. 

5.2.  Method 

To illustrate the advantage of the TEG algorithm, comparison plots among TEG, ε-greedy, and 

Thompson Sampling will be drawn, by setting the number of rounds, or the number of trails, to be 3000, 

and comparing the cumulative regret of all three algorithms. To avoid randomness, 200 independent 

experiments will be run to calculate the average regret. 

5.3.  Prior distributions and ε Decision 

For TEG and Thompson Sampling, the beta distribution is used as prior when the reward is binary {0, 

1}, and the gaussian distribution is used as prior when the reward is continuous. As a result, when the 

setting reward distribution is Bernoulli, beta is used, whereas when the setting reward is gaussian or 

uniformed distributed, gaussian prior is used. 

To control the variable, both ε-greedy and TEG use the same ε value. From the research result of 

Auer et al., a recommended decreasing function for ε is a constant term of 1/n, where n is the number of 

rounds [9]. In practice, tuning the constant factor is difficult, and many would just use 1 as the constant 

factor. Therefore, ε =
1

n
 is used as the value for parameter ε. 

6.  Experimental result and analysis 

6.1.  Regret comparison plots 

True reward distribution: gaussian. 

Prior reward distribution: gaussian. 

Figure 4 is the curve of cumulative regret with respect to the number of trails. The blue curve is ε-

greedy, the orange one is Thompson Sampling, and the green one is TEG.  

Figure 5 is the same curve of the left but scaled the x-axis to logarithmic to prove that the TEG 

algorithm is also Ο(log (N)). Note that here the TEG algorithm outperforms ε-greedy as expected, and 

it is also slightly better than Thompson Sampling. 
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Figure 4. Total regret of three algorithms under 

gaussian true rewards with the number of trails 

unscaled. 

Figure 5. Total regret of three algorithms under 

gaussian true rewards with the number of trails 

scaled to log. 

True reward distribution: Bernoulli. 

Prior reward distribution: beta. 

Figure 6 shows that the TEG algorithm outperforms ε-greedy as expected, and slightly loses to 

Thompson Sampling. the reason behind this is unclear, but one possible explanation is that the prior beta 

distribution is very sensitive to the change of alpha and beta initially, so it requires a great amount of 

exploration to make the distribution stable and reasonable, whereas the TEG algorithm fails to explore 

enough at initially. 

 

 

Figure 6. Total regret of three algorithms under bernoulli true rewards. 

True reward distribution: uniform. 

Prior reward distribution: gaussian. 

Figure 7 shows that the TEG algorithm outperforms both ε-greedy and Thompson Sampling as 

expected. From the graph, the apparent weakened performance of Thompson Sampling matches the 

author’s analysis of Thompson Sampling’s disadvantage — unfavored scattered distributions. It turns 

out that the TEG algorithm successfully mitigates the influence of scattered distribution when the reward 

is continuous. 
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Figure 7. Total regret of three algorithms under uniform true rewards. 

6.2.  Time comparison table 

Besides the regret, a timer is set for each algorithm to compare their running time. The running time in 

seconds represents the average time to run one experiment for each algorithm in three experiments with 

different true distributions, as shown in Table 1 below. 

 

Table 1. Average running time of three algorithms on different bandit reward distributions. Running 

time (sec/exp). 

algorithm 

 

true distribution 

ε-greedy Thompson 

Sampling 

TEG 

gaussian 1.1837 4.1671 1.1197 

Bernoulli 1.7937 5.0258 1.6216 

uniform 1.1900 4.1475 1.1228 
Table 1 shows that the TEG algorithm has a similar time cost as ε-greedy, and runs much faster than 

Thompson Sampling as expected, suggesting that the TEG algorithm is more time-efficient. 

7.  Conclusion 

From the experiment, the advantages of the TEG algorithm can be summarized as follows: first, the 

regret of the TEG algorithm is logarithmic in theory and smaller than ε-greedy with the same ε value in 

general; second, the TEG algorithm is more adaptive to scattered real reward distributions than 

Thompson Sampling; third, the TEG algorithm has a similar running time to ε-greedy, which is much 

faster than Thompson Sampling. 

Some limitations of the TEG algorithm include: first, when the prior distribution is sensitive to even 

the smallest unit of change in its parameters, like beta distribution, the TEG algorithm may not reduce 

the regret as effectively as Thompson Sampling; second, like Thompson Sampling, TEG falls short of 

recognizing the best arm when the suboptimal arm has very close but a little smaller mean reward. 

Due to the significant advantage of the TEG algorithm over ε-greedy, it can replace much work that 

ε-greedy applies in industries with stochastic multi-armed bandit problems, like clinical tests, 

advertisements, etc. Since Thompson Sample performed badly in unfavored scattered distributions, like 

the uniform distribution or U-shape ones, TEG is a good substitution for Thompson Sampling when it 

is known that the real reward distribution might fluctuate sharply, since TEG has the potential of largely 
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decreasing the regret. Lastly, when a practitioner desires the good performance of Thompson Sampling 

but struggles against its running time, TEG could be a good solution to the problem. 

In this paper, the author designed the TEG algorithm, explored its performance, and explained its 

advantages. However, several questions remained. The first one is the decision for the ε value. Though 

ε =
1

n
 is known as a good value for ε-greedy and TEG outperforms ε-greedy for the same ε value, it 

does not determine 
1

n
 as the best ε value for TEG. The ε value can be optimized further, and it requires 

future calculations and experiments. Secondly, the reason for the disadvantage of the TEG algorithm as 

shown in the first bullet point remains questionable. It is the role of future works to propose and verify 

the reason behind it. Lastly, the TEG algorithm still fails to cover a disadvantage of Thompson Sampling 

mentioned in 3.2: the bad performance when two competitive arms have similar mean rewards. That 

leaves large spaces for further improvements on the TEG algorithm. Future works will aim at a full 

understanding of the TEG algorithm and optimizing it, making TEG a strong method for multi-armed 

bandit problems. 
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