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Abstract. We studied different kinds of algorithm used in games that improve the
performance of the AIs, including the frequency-adjusted Q-Learning (FAQ Learning), the
robust multi-agent Q-Learning (RoM-Q Learning), and deep recurrent Q-Learning (DRQN).
We reviewed a paper for each one of the algorithms and create this review paper presenting
the use of different Q-learning algorithms on AI to improve their performance in games.
Through improving the performing of AI in these areas, we are able to find something
attractive in the different kind of behavior the AI does which is stunning and surprising. So,
we can have a more intelligent game systems and become more real.

Keywords: Robust Multi-agent Q-learning, Q-learning, Frequency Adjusted Q-learning,
Deep Recurrent Q-Learning, Minimax Q- Learning

1.  Introduction

In the realm of artificial intelligence and machine learning, the applications of advanced algorithms
in computer games have gained significant attention. Games, with their dynamic and uncertain
environments, present unique challenges for artificial intelligence (AI) systems. Different game
designers have their own ways to adjust the AI to do different behaviors in different games, which is
what the players want to play with. To meet these challenges, researchers have explored various Q-
learning algorithms tailored to improve AI performances in games. This study reviews three key
topics related to the use of Q-learning algorithms in AI for games: Frequency Adjusted Q-Learning
(FAQ Learning), Robust Multi-agent Q-Learning (RoM-Q Learning), and Deep Recurrent Q-
Learning (DRQN). FAQ Learning addresses the complexities of multi-agent learning environments,
where the behavior of individual agents is influenced by the actions of others. By aligning with
predictions derived from evolutionary models, FAQ Learning aims to enhance the robustness and
efficiency of multi-agent learning systems. On the other hand, RoM-Q Learning focuses on
developing strategies that can defend against adversarial attacks in cooperative games. This
algorithm incorporates a temporal difference learning framework to find policies that are resilient to
such attacks. In the end, DRQN modifies the traditional Q-learning model to train AI for playing
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First- Person-Shooting (FPS) games, demonstrating impressive performance in both full and limited
death matches.

2.  Background

With the development of the game industry, players have now become picky about the artificial
intelligence in games, which is indeed a major factor in all kinds of games - whether the non-player
characters (NPCs) or the AI enemies. Thus, the performance of the agents in the games is very
important for the experience of players and the selling of the games.

Agents in the past often decided their actions by simple behavior trees or fixed actions that were
decided by the game developers. However, these actions are often predictable, so game researchers
tried to develop many other algorithms that allow the agents to decide the actions themselves and
thus improve the game experience by making the agent actions unpredictable.

2.1. Q-Learning

Q-Learning is an algorithm that makes the agent learn a Q function that represents the cumulative
rewards from past actions. It modifies the temporal difference algorithm and uses it to create the
updating function.

After taking action an in states, the agent observes the reward r and the next states′. The target
value r + γV T (s′) is computed. The value V T (s′) is calculated using the function introduced in the
previous paragraph. The temporal difference error r + γV T (s′) −Q(s, a) represents the difference
between the target value and the current Q-value, and eventually the Q- value is updated by
multiplying α, a fraction of the temporal difference error to the current Q-value.

However, Q-Learning often performs poorly in any condition that is variable and unknown, since
it can only find an optimal solution for a specific, fixed environment. Thus, more algorithms have
been developed based on Q-Learning to fit in different environments, such as Minimax-Q learning.

2.2. Minimax Q-Learning

Minimax Q-Learning improves the way to calculate the Q- values by trying to choose the highest
reward while keeping the opponent’s reward the least.

key differences between standard Q-learning and FAQ learning approaches.
First, Q-learning aims to maximize discounted benefits in multi-state environments, while the

paper focuses on single- state multi-agent Q-learning. The method iteratively updates Q-values
using a Boltzmann exploration strategy to balances exploration and exploitation. FAQ learning
primarily correct

The V (s′) here is the calculated value that will be updated to the model. Minimax Q-Learning
assumes that the loss of the opponents is equal to the reward of the agent, and it will go through all

 Q(s, a) ← Q(s, a) + α [r + γmax
a'

Q(s', a') − Q(s, a)] (1)

V(s') = max
π1

min
π2

∑a1,a2
Q(s', a1, a2)π1(a1 s')π2(a2 s')∣ ∣ (2)
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possible combinations of opponents’ actions and allows the algorithm to find the action that
minimizes the opponents’ rewards.

After researchers improve the algorithms, they then question: What if there are multiple
opponents? To address this, developers continue researching and developing, eventually Q-
learning’s evolutionary trajectory, achieving better alignment with evolutionary model assumptions
under continuous time limits.

The FAQ learning update function is given by:

In contrast, standard Q-learning uses:

creating many distinct algorithms. Interested in understanding how these algorithms work and
evaluating their performance under different conditions, we investigated several notable approaches.
From these, we selected three: Frequency-Adjusted Multi-agent Q-learning, Robust Multi-agent Q-
Learning, and Deep Reinforcement Learning. We analyzed their respective papers, and uncovered
the logic behind their formulations.

3.  Frequency adjusted multi-agent Q-learning

The combination of the thinking theory framework in NPC behavior logic and Q-learning was
explored by [1] in their work on Frequency Adjusted Multi-agent Q-learning. The authors compared
the advantages and disadvantages between multi-agent learning and single agent learning, proposing
a new Q-learning method called Frequency Adjusted Q- Learning (FAQ Learning).

Multi-agent learning is more complex than single-agent learning and lacks solid theoretical
support. Recent developments have combined evolutionary game theory with reinforcement
learning, offering new perspectives for multi- agent learning. This includes establishing connections
between Q-learning dynamics and replicator dynamics in evolutionary game theory. The replicator
dynamics formally define population changes over time, where a population consists of individuals
belonging to species that correspond to pure actions available to a learner.

The utility function ri(t) assigns rewards to actions per- formed, analogous to Darwinian fitness
for each species i. The distribution of individuals across different strategies can be described by a
probability vector equivalent to a player’s policy. Evolutionary pressure through natural selection is
modeled by replicator equations, where successful strategies with above-average payoffs grow while
less successful one’s decay. However, empirical findings demonstrate that actual Q- learning
behavior deviates from evolutionary game theory predictions, with models often presenting more
idealized out- comes than observed in practice. The relationship between the learning rate α and Q-
learning proves crucial for achieving optimal convergence speed and quality. The paper highlights

To evaluate the relationship between FAQ and Q-learning, the authors conducted experiments
using three game theoretic scenarios:

• The prisoner’s dilemma (single pure Nash equilibrium)
• Battle of the sexes (two pure Nash equilibrium and one mixed strategy equilibrium)
• Matching pennies (single mixed strategy Nash equilibrium)

Qi(t + 1) ← Qi(t) + xiα(ri(t) + γargmax
j

Qj(t) − Qi(t)) (3)

Qi(t + 1) ← Qi(t) + α(ri(t) + γargmax
j

Qj(t) − Qi(t)) (4)
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These experimental games were selected to comprehensively test FAQ learning’s performance
across different equilibrium types. The results suggest that FAQ learning offers improved theoretical
grounding and practical performance compared to standard Q-learning in multi-agent settings.

4.  Robust multi-agent Q-learning in cooperative games with adversaries

[2] introduces an algorithm the authors developed, robust multi-agent Q-learning (RoM-Q,) and
compared the algorithm with other algorithms under the environment of multi-agent systems
(MAS). The authors are inspired by real world networks and hopes to allow RoM-Q plays with the
best performance in competitive games.

To begin with, the RoM-Q is a Q-learning method that aim for MAS, its target is to find a robust
solution to defend attackers’ actions. The RoM-Q is based on temporal difference learning, which
uses the difference between the recent expectation and the future predict to modify the value
functions, in order to find the best solution without the environmental models. However, there are
also differences between RoM-Q and temporal difference learning. While updating Q values, RoM-
Q will assume there are K attackers and traverse all possible combinations of attacks, and choose the
action that has the least Q-value to break the attack.

The basic logic of the algorithm modifies is shown by a pseudocode and a function in the paper,
and we will explain it here. Firstly, after initializing the inputted Agent set N, state space S, action
space A, learning rate α, discount factor γ, exploration rate ϵ, attack size κ, and problem horizon h,
the program will make its decision based on the current state S. It will follow the ϵ-greedy policy,
which is the algorithm that keeps the balance between the newly explored data and the existing data.
Then, it will execute the choice and observe the reward r and the next state S. If S is in terminal
stage, the system will rest, otherwise it will update the Q-value by using the algorithm, going though
all combinations, solve linear equations and obtain the decision, then repeat.

The function looks like this:

where    iterates over all possible combinations of κ adversaries, minaj selects the action aj

that minimizes the Q-value needed while facing each possible attack j, maxπ−j is the best action
taken while the agent is not under attack, and a−j Q(S, a−j, aj)π−j(a−j|S) computes the expected Q-
value in state S.

For the updating of Q-value, the algorithm uses the same way of updating with Q-learning, which
has been mentioned in the background:

To examine the effectiveness of RoM-Q learning, the com- parison between RoM-Q learning and
other algorithms is necessary. The researchers decided to compare RoM-Q learning with Q-learning
and minimax-Q learning. The experiment is set in a network with two nodes, and here are the
variables that appear in the experiment:

V T(S) = min
j∈CK

min
aj

max
π−j

∑a−j
Q(S, a−j, aj)π−j(a−j S)∣ (5)

min
j∈CK

Q (s, a) ← Q (s, a) + α (r + γV T (s') − Q (s, a)) (6)
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Table 1. Symbols

Defense Algorithm δ = 0.1 δ = 0.4 δ = 0.8

Q-learning 5.6 3.3 2.5
minimax-Q 6.2 4.9 4.5

RoM-Q 6.8 7.2 5.2

The algorithms take these parameters in both attack-existing environments and no-attack
environments. For the no-attack condition, the three algorithms perform similar, with RoM- Q in the
middle, minimax-Q at the top and Q-learning at the bottom. This data shows that RoM-Q is always
in the safe zone, and though minimax-Q achieves the high reward in smaller number of actions, its
robustness is not as large as RoM-Q. In the second experiment, the three algorithms take turns in
being attackers, and then their response under attacks are being tested. Under each attack algorithms,
when the probability of attack δ increases, all systems will have lower performance. Here are the
estimated values when δ is about 0.1, 0.4, and 0.8.

Table 2. Test performance under q-learning-based attacks

Variable Meaning

ci The limit of tasks a node can hold.

rarr
i The probability of a task being given to the node.

aexec
i complete a task, reducing the task count by 1.

pexec
i Cost of the action

aoff
i transfers one task to another node.

poff
i,j cost of transferring.

prepr
i

punishment of having number of tasks more than ci.

ui Survival reward
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Table 3. Test performance under minimax-q-based attacks

Parameters Value

Training samples Strain 1,000,000

Evaluation samples Seval 20,000

Trials I 40
Learning rate α 0.01

Exploration rate ϵ 0.1
Discount factor γ 0.9

Reward u [8, 8]

Over-flow penalty pover [100, 100]

Capacity c [3, 3]

Arrival rate rarr [0.5, 0.5]

Execution penalty pexec [4, 1]

Off-loading penalty poff [2, 2]

Number of adversaries K 1
Defense Algorithm δ = 0.1 δ = 0.4 δ = 0.8

Q-learning 6 3.5 0.8
minimax-Q 6.2 4.3 2.0

RoM-Q 6.8 5.7 2.8

Table 4. Test performance under rom-q-based attacks

Defense Algorithm δ = 0.1 δ = 0.4 δ = 0.8

Q-learning 6 3.6 1.6
minimax-Q 6 3.8 2.4

RoM-Q 6.7 5.3 3.0

By rarr, the number of tasks on a node will increase by 1, and the node will execute actions ai, ai,
or not doing anything. Then, the condition will be updated and check whether the task number
exceeds ci, and determine whether the prepr will be given. In the end, the sum of rewards minus the
sum of punishments will be the result. The parameters if the experiment is shown in this table:

According to the table, RoM-Q learning is not only performing the best in all the defending
conditions, but also having the best attack effect, since the RoM-Q attacking environment makes all
three algorithms to have lower performing scores, while Q-learning performs poorly in attack-
existing environment, and though minimax-Q performs well in both conditions, it still falls short
comparing to RoM-Q.

The advantage of this paper is that it posts many pseudocodes and graphs to explain the
algorithms, and it posts the results of the experiment by graphs, which seems clear to readers. The
idea that “prepare for the worst” in RoM-Q learning provides the algorithm the ability to perform
well in multi-agents attack environment. However, there still exists many weaknesses, such as that
the authors didn’t explain the resulting graphs, so the readers have to go back to the previous part to



Proceedings	of	CONF-CDS	2025	Symposium:	Data	Visualization	Methods	for	Evaluatio
DOI:	10.54254/2755-2721/2025.PO25141

192

check the variables or data. Also, the variety of factors of the experiments could be improved by
including more ways of policies other than just Q-learning, minimax-Q, and RoM-

Q. RoM-Q’s ability in attacks and defenses can be more explored by testing in different multi-
agent environments. Last but not least, the data in the graphs do not have exact values shown, so the
readers can only observe the trend of the algorithms’ performance, and estimate the result values.
This forces readers to take more steps in understanding and comparing the data, which is an
important disadvantage of the paper.

In a conclusion, RoM-Q is an essential algorithm in facing attacks, according to the experiment,
and its ability to pre- pare for the worst situation allows the algorithm to perform influentially under
multi-agent system.

5.  Playing FPS games with deep reinforcement learning

[3] modified a model based of DRQN for training AI for play First-Person-Shooting (FPS) game
(Doom), which performance well in both full death match and limited death match.

The model is principally based on deep recurrent Q- networks (DRQN). However, DRQN has
certain disadvantages. It performs well in simple conditions (e.g. turning or attacking), but not in
more comprehensive conditions. It may continue to shoot and wait for enemies to move to their fire
line. One reason for this is that it may not be able to detect enemies. They used a ViZDoom engine.
This engine gives the access to the internal variable generate by the game. Based on this, a Boolean
value which recording weather there is an entity or not is used. Only the frame with entities will be
used for further model. The game then goes through a convolutional neural network, and the output
is then split into two different layers as some will give to LSTM for normal DRQN model, others
marked as game features, an extra hidden layer. This layer is training with Q-learning object. This
game feature improves nearly twice the kill-die ratio than that not has.

The whole game task is divided into two parts: the navigation and the action phase. This gives
out several advantages. First, training two network together is faster than training one. Second, the
navigation phase only requires three actions, so it reduce the state-action pairs required and faster.
The two phases are training by different method. DRQN for action phase when enemy detected and
DQN for simple navigation, when no ammo or enemies. The switch between different method also
increases the performance [4-6].

For the training part, the first part is reward. The score getting in the game require the agent to do
a list of action, so it is difficult for agent to learn which action refers to it. To solve this problem, the
reward shaping, that include small intermediate reward in training to speed up the process is used.
Three rewards are added to action phase, which are:

1) Positive reward on picking up objects
2) Negative reward on injured
3) Negative reward on losing ammo
Also, some rewards are added to navigation:
1) Positive reward on picking up item
2) Negative reward on wrong route
3) Positive reward on shorter distance
Another process called frame skipping is used. The frame skip means that the agent will only

receive the K+1 frame, As K is the frame it skips. The process can increase the training efficiency
but may harm the performance. They choose to skip 4 frames for training to reach a balance of
accelerating the training and the hurt on performance.
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Sequential updates are also be used. N observation is randomly sampled but only the one that
have enough history (hidden state) will be updated. They selected that only observation with four
histories will be used as a total of eight history. This appropriate update leads to a higher kill-die rate
during the training. If there are more updates, it will cause a high correlation in sampled frames. Or
there is less updates, it will be difficult for network to train.

For experiences, starting with hyper-parameters, the training using RMS-Prop-algorithm and
mini-batches of size 32. The screen uses a 16/9 resolution of 106*60, this allows the agent has a
108-degree vision. Grayscale images lead to a low performance, so colors image is used.

The whole experiment is done on ViZDoom platform, as fight against Doom bots. The score is
regarded as the killing numbers. Two competition is been tested, one is the limited death match,
which is on a specific map with specific weapon. Another is the full death match, which means
experiment on random map with different weapons.

The evaluation metrics is the kill-die ratio. The number of items picked up is also included. These
let the agent prevent dying and encourage it to explore.

For the result, the data was recorded during a 15 minutes play. To begin with the effects of
navigation in limited death match, the object picked is three time as more as the one with no
navigation, at 46 and 16 respectively. However, it has limited effect on K/D ratio, as the map is
relatively small and more enemies that finding enemies is not crucial. However, is has a significant
effect on full death match, where the K/D rate enhanced from 3.12 to 6.94 and also picking up more
objects. The agent behavior is even better than humans. As the K/D ratio of agent is nearly five time
as more as human and perform well on fighting with each other. It kills human 8 times during a 5-
time fight compared with human only killed it 5 times. The suicides number is also lower for agent
than human, which means it has less errors on playing.

For game features, it rise the K/D ratio to more than 4, compared with the one with no game
feature in model only reached 2 at the same training time. Another advantage is that it gives
feedback on the quality of each frame. So, the LSTM model will only receive the one with high
enemy detection accuracy. The enemy detection accuracy takes a week to train but reasonable as it
highly related to the final performance of the model. The accuracy with and without dropout is also
different at 90% and 70%, which also improve the performance of the model.

For conclusion, this model has some improvements and these improvement of this model leads to
a significant improvement as it has a high K/D ratio and also better than real human players.

6.  Conclusion

In conclusion, the review of these three topics highlights the significant advancements in the
application of Q-learning algorithms for AI in computer games. FAQ Learning provides a novel
approach to address the challenges posed by multi- agent learning environments, enhancing the
robustness and efficiency of AI systems. RoM-Q Learning demonstrates how its ability to defend
against multiple attacks environments is better than the other algorithms. Lastly, DRQN shows
impressive performance in FPS games, outperforming human players in terms of kill-die ratios.

Although there are some inaccuracies in the performances of AI in games, we still believe that
there are some improvements in AI performances. Collectively, these studies underscore the
importance of developing advanced learning algorithms for AI in games. As we continue to explore
the boundary of artificial intelligence, the insights gained from these studies will undoubtedly
contribute to the development of more sophisticated and robust AI frameworks for gaming
applications. The future of AI in games looks promising, with the potential for even greater
advancements in performance and adaptability.
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